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ABSTRACT

The solutions D(x,y,y,»q) of the partial differential equation

D__ + li + yD = 0 are employed as a mathematical model for the
fields reflected from and diffracted around an opaque convex
surfaces This solution involves the Alry function wl(t) which

is a solution of wy 7(t) = twy () = 0. FORTRAN computer programs
and tables are given for the appropriatc Airy functionse. A con-
siderable portion of the report is devoted to discussions of the
representations for the roots of the equation wl'(ts) - qwl(ts) =0
which play a fundamental role in the theory. As a function of g,
these roots satisfy the Riccati equation (t - q2)(dt/dq) = 1, The
Riccati equation is used to develop several representations for
these rootses FORTRAN programs are presented for the evaluation
of these constants. Tables of the roots are given for certain
cases which have been shown to be of practical significance.
Asymptotic expansions are developed for the height gain function
F(y) which is a solution of F%(y) + (k2f(y) - RS)F(y) = 0. The
theory of representing functions by a series of Chebyshev poly=-
nomials is reviewed and a discussion is given of the significance
of thcse expansions for future work in diffraction theory.
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PREFACL

Although this report is officially entitled a "final" report upon
Contract AF 19(628)-11393, the rcport is in fact an "interim" re-
port upon a subject which has attracted the authort!s attcntion
for over ten years. Prior to the onc-year period during which
the rescarch has been carried out undcr the present contract, the
author undcrtook work along these lines as part of thc Independent
Research Prog:ram of the Lockheed Missiles and Spacc Companye. The
attainments made to date fall far short of the author's goals.
However, the author hopes to continue to strive towarcs filling
some of the gaps that exisc between the results in both the asymp-
totic thcory of diffraction by convex surfaces and the numerical
analysis which is required in order to translate the esoteric
mathematical results into curves and tables that will mect the
needs of the practical engineer. The author rcadily admits that
the opaque convex surface is an over-idcalized model for any ex-
ccpt the simplest of propagation and diffraction problcmse. How-
ever, the actual problems that confront most cngineers in this
field are so complex that there is a grcat demand for information
concerning the phenomena ascsociated with a smooth convex suriaces
The present research efforts have been directcd towards extending
the algorithms and the computer programs that will permit us to
obtain numerical results when the scatterer 1s an opaque surface
which 1s characterized by an impedance boundary condition.

The problem of the diffraction of elcctromagnetic waves by convex
surfaces has been the subject of hundreds of papcrs since the ep-
pearancc over 100 years ago of a classic paper by A. Clebesch which
can be considered to be the "first" paper upon thi: subjects The
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author recently had the honor of having a survey of some of the
early history of this problem to appear as the lead article in

a "Special Issue on Radar Reflectivity" which was published as the
August, 1965, issue of the Proceedings of the Institute of Elec-
trical and Electronics Engineers (Proc. IEEE, Vol. 53, No. 8,
Auge, 1965). The author would like to encourage his readers to
read this historical survey. If the reader 1s not alrealy familigr
with this special issue, the author 1is certain that the very fact
that the reader has been interested enough in this report to have
read this far is a very sure indication that the "Speeial Issue

on Radar Reflectivity" will provide the reader with a "gold mine"
of information,

The theory of diffracticn by convex surfaces cannot be readily
separated from a large body of work in applied mathematics. There-
fore, the enginecr who finds himself facing a practical problem
involving diffraction by a convex surface finds that he is con=

8 fronted with an almost chaotic mass of literature in which there
F are many gaps in the practical information to say nothing of the
fact that there is a lack of a coherent and effeetive general
theory. It 1s with regrets that the present author finds himself
3 in the position of adding to the confusion and the frustration of
the "newcomers" by releasing the present material in a form such
! that a considerable background is required in order to pick out

" results which may be helpful in a particular practical problem.

1 The author would like to illustrate his sympathy for the reader
who is a "newcomer" to the diffraction field by relating an
experience which occurred during the course of this contracte

The author is frequently asked to recommend books, reports, and
papers which can provide an engineer with a means of learning
what results are currently available for him to use in connection
with problems associated with diffraction by a convex surface.

viii
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For soveral yecars, tlie author has been telling his colleagues
that the book that they were seeking was about to be published
as Vols 1, Diffraction by Convex Surfaces in the Intcrnational
Seies of Monographs on Electromagnetic Waves which was begun

several ycars ago by Pergamon Press. The author of this book

was to have been Academician V. A. Fock of Leningrad University.
The present author* had been considerably influenced by a series

of papcrs by Fock which he had discovered in the mid-1950is,

With the cooperation of P. Blacksmith, M. De. Friedman, and others,
the author had made available to a limited circle of readers a
collection**of 13 papers by Fock, together with a summary of Fock's
contributions by Academician Ve I. Smirnov and an appendix which
contained a pertinent paper by Academician M. A. Leontovich.

It was the understanding of the present author that when Fock
visited the United States in the late 1950's that he had refused
permission for the collection of papers to be issucd in book=form
on the girounds that the papers were incoherent and that he intended
to prepare a monogiraph in which a unified presentation of his
research would be presenteds However, even behind thc "Iron Cur-
tain" the scientists apparently find the days and nights pascsing

*Although tine present author has since become sufficiently ac-
quainted with the literature to rcalizc that much that he lecarned
from Fock's papcrs could have been lcarned from papers by White,
Pekeris, Pryce, Furry, and othcrs, the author recognizes the fact
that the clarity of presentation and the thoroughness of the in-
vestigations which were found in Fock's papcrs werc such that he
can best describe Fock's influence upon his oun worlk by asserting

that Fock was his "teachcr."

**Air Force Cambridge Research Centcr, Diffroction, Refraction,
and Reflcction of Radio Waves: Thirteen Papers by V. A. Fock,
NeAe Logan and P, Blacksmith, eds., Report AFCRC-TN=-57=102,
ASTIA Document Noe. AD117276, Bedi'ord, Mass., June, 1957
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in such swift processions that o.le has to sometimes face reality
and admit that the goal which one has set for oneself is too am-
bitiouse Anyway, it was a great disappointment to the present
author when in mid-1965 the long-promised Pergamon Press volume
appeared in print.* This monograph is nothing more than 17 papers
by Fock (with several having been written with co-authors) which
(except fur minor corrections) appear in their original form.
Except for the inclusion of papers published since 1957, the book
which is now available is essentially the same collection of
"raw" reference material which the present author and his associ-
ates had sought to provide to scientists in the United States
when the 391=page paperbound AFCRC report was distributed in 1957.
The author strongly urges the serious student of diffraction
theory to acquaint himself with these papers by Fock. However,
since these are research papers and the material has not been

put together in "textbook style," the reader may find Fock's book
a difficult source from which to acquire a basic knowledge and
background upon which to build the ability to read the hundreds
of papers which are available in this subject area, Furthermore,
since no effort is made to relate the material in Fock!s book to
the more recent publications of other authors, the reader will
have to "forage" for himself to learn what other results are
available to him, Making a literature survey requires considera-
ble "detective work" since a number of the modern authors have
worked independently of one another and cross=-references to each
other'!s works are often conspicuous by their absence.

There are sufficlent gaps in our present state of knowledge in

*V. A. Fock, Electromagnetic Diffraction and Propagation Prob-
lems, New York, Pergamon Press, 1965
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this subject area that any book or monograph published today

would be virtually out=-of-date by the time it appeared in print.
This is particularly true at the present time uvhen the avallabil-
ity of the electronic computer is making it possible for us to
attempt to obtain numerical results which were "impossiblce" during
World War II when the widespread use of high frequency radio waves
created a need for results from diffraction theory for those cases
in which classical gcometrical optics failcd to provide an ex-
planation of the obsavrved phenomena. As an example of the pro-
gress which has been made in the computer field, it is imteresting
to cite the fact that Aiken* made the observation in 1945 that
"eeeif it had been possible to run the computation without inter=-
ruption forty-five days would have been sfficicnt time to complete
the tablesss." of Airy functions which Furry and other scientists
needed in their studies of wave propagatione Onc of the FORTRAN
IV programs which is given in this report could be used on tiie
UNIVAC 1107 to produce these identical tables in approximately
thirty minutes. The a.thor can also cite a more recent example
based upon his own experience. Upon some output sheets f..om the
IBM=650 which were used to prepare the curves for the scattering

properties of perfcctly conducting spheies which anpear in the

3tk
appendix of the monograph of King and wu thei'e appeur some

2

*Phe Staff of the Computation Laboratory, Tables of thoe Modified
Hankel Functions of Order One-Third and of Their Derivatives,
Cambridge, Mass., Harvard University Precss, 1945

**R. We Pe King and Te Te Wu, The Scattering and Diffraction of
Waves, Cambridge, Mass., Harvard University Press, 1959. (Graphs
in appendix illustrate currcnt distributions and bistatic cross

scctions for porfectly conducting spheres for ka = 1,1(0.6)9.5,

10, and 20,)
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penciled notes to indicate that these computations required
forty-five minutes for a set of E-plane and H-plane curves
for a single value of the parameter ka. It is now possible
to generate this same data on a computer such as the UNIVAC
1107 in less than forty-five secondse.

However, as the present author looks back at his computing
experience, his respect for the amazing speed of the modern
electronic computer does not leave him standing in awe as much
as do.s the realization that programming languages such as
FORTRAN 1V offer the modern scientist a powerful tool which
was virtually beyond his wildest dream less than 20 years ago.
One has to have grown=up with the "computer age" to really ap-
preciate what a change has been made possible by the develop-
ment of mathematically=-oriented programming languages which en=
enable a scientist who is not a "computer specialist" to per=
form millicns of mathematical manipulations at the rate of
thousands per seconds

The author'!s first major computation job involved some diffrac-
tion patterns for a circular cylinder and the work was carried

out in the late 194C's by a group of ladies who worked for

months at Friden and Marchant desk machines. Even when two

ladies would work in tandem on worksheets which were laid out in
identical manners, the detection of errors was a very frustrating
taske With human hands and minds at work, it was virtually im-
possible to eliminate blunders caused by an error in lookup in

a table, in transfering a number into the keyboard, copying the
number from the registur onto the work sheets, an error in placing
a decimal point, and, ABOVE ALL, one had to contend with frequent
replacement of the computer personnel so that with even a moderate
size group there was usually always a "new girl." Anyway, much of
this was drastically changed a few years later when the author

xii
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set outto compute the scattering diagrams which are contained
in tho appendix of the monograph by King and Wu. The author
had startcd seme of thuse computations on desk machines of

the Friden and Marchant vuriety, buu he was bogged down in
trying to detect the errors so as to be able to construct the
scattering patterns. At this point, the services of Ge. Ee
Reynolds and Me Re Hoes were enlisted and they came up with

a set of instrctions which made it possibls to obtain thse
desired computations=free of human error- on the IBM-650 com=-
puter.s Although the manner in which these programmers menaged
to get the computer to perform was, to the author, a sort of
"black magic," the author does recall the excessive handling
of thousands of IBM cards as different portions of the compu-
tation were handled by the limited "memory" of the computer and
the final results obtained by having hundreds of cards read back

into the machine and the final answcrs assembled. This was a
far cry from the tedious and frustrating manner oif trying to
obtain the results by hand, but the specialists trained in

prograring the computer wecie an essential part of the tcam,

The development of the FORTRAN, ALGOL, MAD, and similar "languag.s"
has made it possible for the scientist, if he so desires (and
budget conditions can sometimes make desire into a necessity),

to dispensc with the programmer for many of the day-to-day type
-of calculationse. The introduction of thesc languages have had

an important effect in that they are gencirally languages wvhich

are indcpendent of a particular computer and hence a cclentist
who has developcd a program for his computer (which night be a
UNIVAC 1207, for example) may be able to share the prog:am with
another sciontigt who has acess to a totally diffe:rent computir
(such as an IBM 709li). This is a remarkablc new aspect of coopera-
tion between scientists and makcs it possiblce for on: to build up-

on the exporience of other workers. In the days of hand computation

xiii
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sheet properly laid out with all the instructions explicitly
displayed at the headings of the proper columns constituted an
algorithm (a set of explicit rules for carrying out a computat-
tion) for the numerical provlem which was under consideration.
However, except for the layouvt for certain problems such as an
harmonic analysis of a set of data, it was very uncommon for

one sciontist to pass on to another his "set-up" for the arriving
at the numbers which he presented in his tables and graphs.

The situation has now markedly changed with the development o

the new programming languages. The Communications of tho Associa-
tion for Computing Machinery have been supplying a medium for
the publication of algorithms written in the ALGOL languagu for
the past several years, However, the largest cooperative effort
in making programs avallable for use by persons or groups other
than the initiators i1s the IBM SHARE system. The rapid advances !
in computers in the past several years has made it almost mandatory
that a program which is to be effectively shared with another

user be written in a standard language. For example, the use

of a machine=-oriented language should be avoided whenever possible.

The present author knows of one extremely large progream which was “
coded in the FORTRAN ASSEMBLY PROGRAM (FAP) language and the
need has now arisen to convert this program to be used on a com- {
puter which uses a different assembly language. The net result
is that a team of programmers are engaged in translating a FAP=-coded ' {
program into FORTRAN IV so as to be able to have the program l
compile upon other computers than the IBM=7090=T094 for which it .
was originally prepared, Because compilers can be expected to ’

change relatively rapidly over the next few years, the use of ﬁ
a standard laanguage such as FORTRAN IV is highly recommended. L
Although the different compilers may accept only certain "dialects"

of FORTRAN IV, the changes which must be made in going from one )

compiler to another are rather minor if one restricts oneself to
xiv

|
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many of ths present concepts of programming were in use. A worke-
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the usc of featurcs which are available on the¢ widest class of
compilers. A useful reference for FORTRAN IV is the rcport-yr of
the American Standards Association (ASA) FORTRAN Working Group.
Thelr report lists side-by-side a set of standards for FORTRAN
(which is FORTRAN IV) and BASIC FORTRAN (which is FORTRAN II).
McCracken#* has attempted to collect in tabula: form comc of

the characterisitics of over two dozen programming languages

which are being referred to as FORTRAN IV. Unfortunatcly, in

many compilers FORTRAN II is not solely a cubset of FORTiAN IV

and hcnce not all FORTRAN II programs can be compiled on soft-
ware which compiles FORTRAN 1V programs. The language cituation
promises to be a bit more confused in mid=1966 when the manuals
and the compilers will be available for IBM Operating System/360.
Although this new lunguage has becn called FORTRAN VI, NPL (Eew
Programming Language), and MPPL (Multi-Purpose Programming Language),
the most recent announcements apparcntly refer to it as PL/I (Pro-
gramming Language/One). However, somc of theo early indicatiois
arc that FO..TRAN IV as it is now defined will most lilicly be a
subset of the more versatile IBM programming language.

Tne carrying out of certain portions of the work of the present
contract has been hampered by the fact that much of the work
prior to this contract had involved the use of a set of FAP=-
coded SHARE routines known as NPRkC., The conventional FORWRAN IT
compilers did not provide means for the input and output of dou=-
ble precision numbers, and the floating point numbers wc:re re-
quired to lie within the range 10"38 and 1038. We had not only

*We P, Hoising, "History and Summary of FORTRAN Standardization
Devclopment for the ASA," Comm. Assoc. Compute Mache, Vole 7
Octe, 196l, ppe 590=625

#i#De De McCracken, "How to Tell If It!s FORTRAN IV," Datamation,
Voles 11, Octe, 1965, ppe 38-41
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the need, in certain algorithms, to greatly exceed the range of
the numbers permitted in FORTRAN, but we also wanted to have the
ability to input and output more than the 8-digits that were
maximum number of digits which the FORTRAN compiler would handle.
The author was confronted with several problems where the cancel=-
lation of numbers of comparasble size was so complete that answers
to even several significant figures could not be obtained with
the relatively simple algorithm unless many significant figures
could be manipulatede Nearly a decade ago the author showed
that the use of high precision could be used to sum certain di-
vergent series in diffraction theory and this led to the develop-
ment at the Air Force Cambridge Research Center of the capablility
of working with quadruple precision numbers which consisted of
floating point numbers of 37 significant figures.*' However, the
capability developed at AFCRC was limited to the computer available
to them because this was a machine-language coded program. It
was not until 1961 that the author learned of the existence of

a FAP-coded SHARE program which would enable a FORTRAN programmer
to compute in double precision floating point arithmetic. This
very ingenious program had been prepared by Re I. Berggren, J. C.
Cysbers, Re Hafner, and L. Sonneville of the Rocketdyne Division
of North American Aviation, Inc. The prograr sed three consecu=-
tive 36-bit words to store a single number, wich one word being
used for the exponent and two words for the fraction. This arrange-
ment mads it possible to work with floating point numbers which
consisted of more than 21 decimal digits, and with exponents whose
absolute value could not exceed (23 -1) = 3.hx1010. Although this
set of subroutines could be employed in a FORTRAN II program, its
use was rather clumsye When it was announced in the Fall of 196l
that the UNIVAC 1107 which was to be installed at Lockheed in the
Spring of 1965 was to have a double=precision capability of

.’
’Air Force Cambridge Research Center, Cambridge Computer Interpre-

tive Routine for Quadruple Precision Numbers, Report TN=-59=155,1959

xvi

LOCKHEED MISSILES & SPACE COMPANY

e e gt e R R— o gy g

-—

—— s N M v — i gty -




R et b e e

-—

e et I W Y

e ———

2l=significant decimal digits, the author resolved to attempt to
convert to FORTRAN IV for the UNIVAC 1107 and carry out much of
the previous work which had involved the use of the NPREC sub-
routines by cmploying the relatively simple double=-precision of
the new computer. However, upon delivery it was found that the
UNIVAC 1107 performed double~precision by software operations
which limited the preocision of the numbers to 17 deecimal digits.
Nevertheless, the greater simplicity of the use of FORTRAN IV

as compared with the use of FORTRAN II supplemented by the NPREC
subroutines (together with the constant anxiety to the effect
that a systems change on the IBM 7094 might result in the NPREC
subroutine, coded in FAP, no longer being compatible with the
system tapes being installed in the more advanced system monitors
being made available by IBM) lcd the author to seek to continue
to strive towards the use c¢f the FORTRAN IV compiler for the
UNIVAC 1107. Although the loss of I to 5 significant figures
when the FORTRAN IV program was coded to replace the FORTRAN II-
NPRiC program proved to limit a few of the problems that could
be handled, two far more important limitations appeared. Since
the manipulations had been almost solely performed internally

in the computer and the magnitude of the numbers involved in many
of the algorithms had not been known to the author, it came as
quite a shock to realize that many of the algorithms which had
worked successfu:.ly when using the NPREC subroutines could not be
used at all on the UNIVAC 1107 (o>, on the FORTRAN IV compiler
for the IBM T709l) because the exponents exceeded the magnitude

of 103 which is an inherent property of both the IBM and the UNIVAC
compilers, Most compiler designers have apparently decided that
the need for the manipulation of such large numbers is restricted
to such special applications that only the compilers for the Control
Data Corporation (CDC 3000 and 6000 series) and Philco (2000 series)
computers take into consideration these needs, and ceven here the

restrictions are to 10308 and 10616, respectively.
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A second surprise that came with the attempts to use the more
sophisticated UNIVAC 1107 computer was the receipt from the
compller of messages reading "...UNRESOLVABLE AMBIGUITY CAUSED

BY SOURCE LANGUAGE ERROR..+" when attempts were made to run
certain FORTRAN II-NPREC programs on the UNIVAC 1107 after the
conversion process (consisting mainly of changing read and write
statements and the meking of allowances for some minor changes
such as the replacement of COSF{X) by C0S{X) for single-preci-
sion cosines and DPCOS(X) by DCOS(X) for double-precision cosines)
had been carried outs The difficulty can be traced to several
new sophistications of the newer software and hardware of the

new generation of electronic computer of which the UNIVAC 1107

is a typical example. With the newer compilers, one 1s dealing
with both new hardware and new software. One of the hardware
difflculties apparently arises from the fact that greatly in-
creased operation speed is achieved by using a set of film
registers to store the subscripts which are used during the
execution of a DO-loop. This means that for most programs a

very significant saving in computer time 1is saved since the
subscripts are not computed, stored in memory, and then retrieved
as was the case in the earlier hardware. However, if one has
made excessive use of subscripts in & DO-loop, the system apparent-
ly becomes saturated and informs the programmer that an unresolva-
ble ambiguity has been encountered. Therefore, in such cases the
original algorithm has to be recoded and broken down into smaller
unitse A not-too=-dissimilar situation can occur with rather
long arithmetic expressions that involve a great deal of multiply-
ing, dividing, raising to a power, ctc., and the user has been
lax in the use of parentheses. The compilers have apparently
been designed to try to "look ahead" and optimize an expression
and it is possible that a lengthy expression which was compiled

by "brute force" on an earlier FORTRAN II compiler may result

in a message regarding an unresolvability in the source language

xviii
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when submitted to a more sophisticated compiler. This lattecr type
of difficulty is readily avoided by using parenthesis whcrever
they help the "human reader' to understand wha%t is required and
the result will generally be that the "inhuman compiler™ will

also encounter less difficulty in understanding what it is that
the programmer wishes to have the computer do with his lcngthy

set of instructions. Altiough it is discouraging to find that

a program that already works on a less sophisticated compiler

and computcr may necd to be drastically modificd to be accepbable
upon the newer equipment, the greater flexibility of thc FORTRAN
IV language and tne greater speed of compilation and of execution
of the generation of computers more than offsets the inconveniences.

However, the difficulties associated vith the fact t. «t the num-
ber of Jdecimal digits in a double-precision number is 16 for the
IBM 7094 and 17 for the UNIVAC 1107, uhilc the magnitude of the
numbers may not exceed 1038, remains a scrious limitation for a
number of computing algorithms. In spite of the fact that its

use is somewhat clumsy, the author would like to see the old
NPREC subroutines rcvised so as to be compatible with FORTKAN IV
and be acceptable to thc "systems tape" on which is "located"

the FORTRAN IV compiler, Although the author knows of no efforts
which will lead to this capability for the UNIVAC 1107 or 1108,
the author knows that a group at the Ames Rescarch Center of the
National Aeronautics and Spacc Administiation are in the process
of preparing a FORTRAN IV version of the NPREC subroutines which
will go scveral steps beyond the original NPRiC subroutines and
which may pcrmit the use of triple=- and quadruple-precisione. When
this set of subroutines has becn debugged and submitted to the
IBM SHARE library, thc author looks foward to employing it for
many problems which have been currently stymied because the algo-
rithm known to the author would require drastic revision before
the quantity can be computed with the normal range of precision
and magnitude that the FORTRAN compilers have been dusigned to
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cope with in their everyday use. That this class of problems is
not purely academic and confined to only a few problems such as
those encountered by the present author can be seen by observing
that there have recently appeared several papers that deal with:
"arbitrary precision" floating-point computations and the associ-~
ated input-output conversion techniques.*

Further evidence of the fact that this type of increased facility
for the electronic computer is more widespread than one might
imagine at a first consideration of the problem can be seen from
the fact that Re K. Holmberg of the National Bureau of Standards,
Boulder, Colorado, has prepared a special set of IBM 7090 sub-
routines which are known as the EPREC or "Extended Precision
Arithmetic Package." Whereas the NPREC package from North Ameri-
can Aviation used two words for the fraction and one word for the
exponent, the EPREC package requires just one word for the frac-
tion and one word for the exponent. The result 1s that the
precision of the number is essentially the same as in convention-
al FORTRAN, but overflow and underflow problems are postponed
until much larger numbers are encountered since the routine will
handle numbers as large as 10u920.

The drawback of the use of software such as the NPREC and E! REC
subroutines is that a considerable amount of the core storage
(it takes nearly 4000 "words" to store the NPREC subroutines)
is consumed in maeking the subroutines available. The author
hopes that in the near future that the computer menufacturers

*Ae Ho Stroud and D. Secrest, "A Multiple-Precision Floating-Point
Interpretive Program for the Control Data 160l," Computer Je., Vol.
7’ Jan.., 196’-‘-, PDe 62"'66

Y. Ikebe, "Note on Triple-Precision Floating Poirt Arithmetic with

132-Bit Numbers," Comm. Assoc. Compute Mach., Vol. 8, March, 1965,
PDe 175'177
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will become more aware of the special needs of scientific com-
putation and build in the ability to handle numbers of grcater
precision and larger range in the hardware itself. At least

one manufacturer seems to have madec a good start in this direc-
tion,namely the Honeywell Series 200. The programmer can specify
by a parameter card at the beginning of the source program an
integer N which will determine the number of "characters" to

be employed for each quantity which is the appear in the pro-
gram that follows. Each "character" consists of 6 binary bits
and hence the fact that any number of "characters" between 3 to

12 can be specified means that the programmer can specify by
means of a control card whether the program is to use floating
point numbers that range from an accuracy of 5 digits to 20
digitse The range of normalized floating point values is given
as 10"616 to 10+616 in a recent brochure on the Honeywell Model
1200, It is intceresting to observe that because of the variable
word length made available to the programmer, that the "dialect"
of IFORTRAN IV which is used on this Honeywell computer does not
include the type declarations COMPLEX and DOUBLE PRECISION. It
is obvious that the need for double precision has been eliminated
becausce of the choice of word length that is made available to
the programmer, but the dcnial of the complex arithmetic ability
found in other FORTRAN compilei's means that the programmer rust
work out the real and imaginary parts of all quantities. However,
the author can forsec the day when & later gcneration of this
compiler will have the complex arithmetic built into the compiler,
The author hopes that other compiler designers will scc the ad-
vantages to the scientific computer of having the ability to con-
trol the precision by means of a "control card" and that the need
for clumsy subroutines (written in assembly languages such as
FAP for the IBM-709h end in SLEUTH for the UN1VAC 1107) to per-
Tform calculations of high precision with "large" numbers will

be eliminated in a future gcneration of FORTRAN IV compilers,

xxi
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The time "ran out" én the prescnt contract before the author had
the opportunity to employ the Stromberg-Carlson [j020 film plotter
which is available as part of the computer facilities at LMSC.

A subroutine has been prepared ty M. He. Seigel* for a customer
on-another contract who wished to make contour plets (similar to
the familiar geological contour maps) of the radar reflectivity
of certain targets as a function of the polar angles ¢ and the
azimutal angles ¢, when the angles are treated in the contour
plot as a number pair (@y¢9) in a complex plane. It is hoped

that in future work that this mode of presentation will be fre =
quently employed in the author'!s efforts to depict to his readers
thebehavior of diffraction phenomena as a function of the complex-
valued impedance parameter. This new plotter opens up a broad
new field of applications for the visual presentation of data.

#ir
The reader is urged to consult Fige 1 of a recent paper by Chezem

where it is shown that the "beautiful" three-dimensional presen-
tations of the behavior of functions which have long intrigued
physicists who thumb through the pages of Jahnke and Emde have
now been brought within the reach of any programmer who has ac-
cess to a versatile electronic plotter such as the SC 1020.

The author hopes to continue the work which is reported upon in

this document. He looks foward to the day when sufficient know
ledge of the means by which the required functions can be evalu-

ated will have been acquired so that the user need only follow a
"cook=-book" type of set of instructions to obtain numerical
results for a practical problem, Just as the housewife scldom

*Lockheed Misslles and Space Company, Digital Contour Plotting
Techniques, by M. H. Seigel, Report ISSA-507, Sunnyvale, Calif,,

June, 1965

B
Ce G. Chezem, "Note on "Three-Dimensional" Plotting As a Techni-

que for Finding the Zeyts of Functions in the Complex Plane,"-
Computer J., Vole 8, Octs, 1965, p. 288
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has any knowledge about the complicated chemistry taking place
in her cooking utensils, so also thc electronics engineer secl-
dom has a need to actually know the fine detalls of asymptotic
expansions, Airy functions, etc., in order to arrive at the
guidelines which he requires from theory provided he can have
before him the proper "cook=book" type of instructions as to
how to obtain the numerical information which will describe his
physical phenomena. There has already been an enormous amount
of work reported upon by investigators who have found diffraction
theory a fertile area from which to pluck a subject to develop
into a paper for publication. However, in spite of the large
amount of tables and graphs which are available, the invistiga-
tor who seeks to obtain some results "...for an engineering study
which must be completed by a weck from Fridaye..." will usually
find his situation quite hopeless. When he goes to thc library
to do his literature survey the chances are quitc good that he
will find Scores of papers which are quite confusing because
although the authors are treating essentially the same problems
by essentially the same methods, they persist in using their own
personal preferences for the notation for the various functions
involved and hence a comparison of the results of the papers will
be quite difficvlt. Then, after he has mastered the papers (long
after the "duc date" for the enginccring study) he will almost
certainly find that certain difficult aspccts of the theory have
been glossed over and that the filling in of thesc gaps requires
considerable experience, mathematical ingenuity, and competence
in numerical analysis and computer programming.
The author has worked at this subject arca for long enough, and
he is aware of his own personal limitations, and therefore his
dreams of providing a "relatively simple" set of rules and pro-
grams for thc practical cngincer have become less ambitious with
the passing of s.vecal years, However, the d:cam persists and
the author hopes that his next reports will come closer to help=-
ing his enginecring colleagues than does this present report,
xxiii
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Section 1
THE DIFFRACTION FUNCTIONS

This research program is concerned with the theory and applica-

tion of the Green's function D(x,‘y,yo,q) defined by

Differential 82D+1__ & 0Sy< e
Equation ;;2_ ox YyD=-3@3b - Yo 0<x<eo
Boundary [8D , .

11 By T ¢
Condition y ]y-o
Radiation

Condition Um *%y (‘%l,') -1 WD)] =0

The solution of this problem involves the Airy functions

2
(:? —t)wl’z(t)=0
W -ﬁ[m(t) :tiAl()] =7i_—£exp(--1§x3+xt)dx

t#Iexp[ 1(;x3+xt)]dx

v(t) =-2-]{'-[w1(t)-w2(t)] =vx Al(t) -vi-jcos(—x +xt)dx
o

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

It 1s possible to express this Green's function in the form of

a Fourier integral or in the form of a "normal mode"
which involves roots ts which are solutions of (1.8).

1-1
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Dx 7.7, 9= 3 [ @ my[wt-y)ve-y)

v () -qv(t)
- — = w.(t - -~ [ )
e A |
15: oxp (ixty) Wy (tg = Yo) Wy (ty = Y) ,
== ' 13 T 1.7
s=1 ['l(t-)] -tl['l(tl)]
1
where
w'l(ts) - q wl(ts) = 0 (1.8)

In some applications, it is convenient to renormalize D(x,y,yo,q)
in order to employ a function V(x,y,yo,q) which has the property
V(O’O’O’O) = 2.

VX, ¥ ¥, @ =3-bx D(x,y, 5, 9 (1.9)
2
?;;’-+1%‘—;+(y-.é-)v-o (1.10)
oV ) }
qV 0 (1.11)
&),

When Vo * it is convenient to express D(x,y,yo,q) in the form

b . oxp(!-g-yoa/z+i{-)
(x.!.!o-Q)yo_,. 2{77_#;

E(&v yv@*%fﬂ(un lv(t-y)-l"_'r@(;)::%.('% wl(t_’)]dt (1.13) [
1 1

(1.12) %

Ex-F,.7 9

2

9°E OE 3E _ (1.14)
—5 +1—+yE=0 , (W'O-qE) =0

oy o y=o
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It is often convenient to decompose E(Z,y,q) into a "plane wave"
rield E_(&£,y) and a reflected field P(£,¥,q).

1
E,¢ 7= [ em@tve-nat

3
= exp (‘53’ -1 '53‘) (1.15)
__ 17 V() - qv ()
P » S = T = = .
€y === i U o G qw. 1N (1. 16)

1,1 Applications

The function V(x,y,yo,q) is well known in the theory of the pro-
pagation of the ground wave around the earth's surface undcr the
conditions of '"mormal refraction" (i.e., in the absence of ducts
and atmospheric inhomogeneities)e As an example, we cite the
problem of finding the Hertz potential for a vertically-directed
electric dipole located at z = r, on the polar axis in the region
exterior to a sphere of radius ae Let the Hertz potential in

free space be described by

U, = exp(LkR)/(wR) , r=v o+ (z - 1 )2 (1417)

The field in the prescence of the sphere must satisfy the equations

2.2\, _ 8(9)8(r-r) (1418)
(V +k)U ) 2771'02'1!!90
/
20 af(2)" afuo , ems
(119)

The solution is generally given in the form

1-3

LOCKHEED MISSILES & SPACE COMPANY




- -

iks
U"%F\/?i%b‘ Vi 3, 9 (1+20)
k 1/3 /3 /3
X= = _._
s=al 5 h=r-a 3 h =TI, -8 (1.22)

The attenuation function V(x,y,yo,q) is often written in a form
which employs a so-called "height-gain" function fs(y)

© oxp (ixt)
VE Y. ¥, @ =2¢Ivrx'z — L) L0) (1423)
o=1 g4
(tg-y)
£0) = “l,ts) =1-qyeptyte (1o2L)
2 3/2
- °"p[ ( ﬁts'T)]l 2 l
1+ —— e 1,
8 y>>|ts|' WWI ) oy (1.25)

In the pioncering work of van der Pol and Bremmer (Ref. 1) in
the late 1930's, thie attenuation function V(x,y,yo,q) was quite
adequate because of the low antenna heights and the relatively
long radio wave lengths which were of interest . However, after
the development of radar in the early 19,4,0%'s it became very im-
portant to treat the case of very short wavelengths and very
great heights. The calculations which were made by van der Pol
and Bremmer from regions deep in the shadow to just within the
lighted region had becn made on the basis of (1e¢7)e Fige 1=1

is taken from one of the:classic papers by these authors and
shows how by using an increasing number of terms that the varie-
tion of the field can be followed from its region of deep shadow
below the horizon to points within the lighted region where the
dashed lines in Fige 1«1 show the envelop as predicted by optical
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theory., When the asymptotic form for the height-gain factor
given by (1.25) was introduced into (1.23), the residue series,
or "normal mode" expansion, failed to converge except for points
below the optical horizone. Since this situation corresponded

to the very practical problem of predicting the high altitude
cove:rage of ground-based radars, the problem was very vigorously
attacked by scientists in the United States, England, and in
Russia. In 1941, Burrows and Gray (Ref. 2) (in a notation which
is quite different from that which we are using) expressed the
results of the van der Pol=Bremmer theory for this case in the
form

xp(ika 9 2)
u~ e‘igagl\/ sin © GXp(i §y3/2) v, x- .9 (1426)
1/3 1/3 ka \1/3 K 2
k s (2 = (2 .9 _k
x=(2) 0y = (&) ke-wsa=i(F) ky V' K2 (1.2
Recelver

Bource

Fig. 1=2 Source on the Surface of a Spherical Interface
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In 1945, Fock (Ref. 3) published a similar result (in the same
notation we have used) and gave a table of V,(g,0) for & = 4.5
(Oel)he5¢ It was long overlooked that Burrows and Gray (Ref. 2)
gave a curve for V,(£,0) and V, (g,0) for £>0 in their original
paper.e The quantity plotted in their graph was dcfined by

(‘1 5 qz)“’l (ty) It L

Fr@ = &7 w.1<t1..) v, ] ¥ ¢ (1,28)

The curves given are for q =0 and q = w0, with L > 0O,

These rcsults of Burrows=Gray and Fock are only valid for natural
units of height y of the order of two to five. PFor larger heights,
it is desirable to use the reciprocity principle and use the fields
on the surface whiciti are induced by a plane wave. This problem
was studied by Fock (Ref. 3)s Fock described his results as "The
Principle of the Local Field in the Penumbra Regione." According
to this principle: "The transition from light to shadow on the
surface of the body takes place in a narrow strip along the
boundary of the geometrical shadow.. The width of this strip

is of the order of (Kaz/ﬂ)%, where a is the radius of curvature

of the normal section of the body in the plane of incidence.

If the geometry is as illustrated in Fig. 1-3, then the principle

o lkx § = (—k—g) X
— U — X

Fige. 1-3 Plane Wave Incident Upon a Convex Surface
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is expressed in the following formulae.

3
H; [exp{ikx + %—)] v, (g,q) (1,29)

Hy

3
B =1(ka/2)$ 1O [explikx + §901 £5)  (L.30)

The current distribution functions V, (£,q) and f(£) are defined as
limiting forms of Eqe (1=23) which results from a use of Eqe (1=25)

v,
vi(s.q>=y1_izym' ° e (-125¥%) ve+vi, 0y, @
°  Ve+vy

= exp(i&t
izﬁrz xp(igty)

~t, - e

1 1
o _! exp(iét) AT dt (1.31)

and

1
£(g) = I(}Lr.nm-qvla,q)‘ v /e’;‘;f:f"dt (1432)

For x < 0 these formulae transform into the equations of geometric
opticse This property can be readily verified by noting that for

£ tending to large negative Values that the special functions have
the behavior

2 exp(-1£3/3)
1 + 1(q/€)
£(g) - 12¢ exp(-153/3)

Vl(g:Q) -

For the special case £ = 0 (1.0, the horizon) we know that
V,(0,0) = 14399 and £(0) = 0,766 exp(-in/3). Thc behavior for the
for other values of q is depicted in Fig, 1=l.
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The principle which was enunciated by Fock in 1945, was extended
to the case when both the source and the recciver were above tHe
surface by the papers of Pekeris (Ref. L) in 19,7 and Fock (1951),
However, let us first review the manner in which the elevated
source and receiver were handled in the work of van der Pol and
Bremmer (Ref. 1),

The starting point for the discussion will be the exact solution
for the Hertz potential for a vertical electric dipole. The prob=-
lem can be discribed as follows:

Differential Equation

- e
v’u+k’u=-6 l 21-0) A (1.33)

2xr ain ©
kz' wztouo for r>a k:-wztlnoﬁ-iwpoo-l for r<a (1.34)
Boundary Condition
2 1
or (rmlndszoontimoulmrour-g (1435)

Periodic Condition

U (6+2m7) = U (©) (1436)
Radiation Condition
83U (1437)
lim {r[30 -uu]l -0 3
r—se

The classical methods for the solution of a problem of this type
involves the expansion of the field in a series of spherical
harmonics. The resulting representation for U(e,r,ro,r‘) involves
a complex combination 6f spherical Hankel functions. If we let
r and r_ represent, respectively, the larger and the smaller of
the two radial distances r and r,s then the exact © lutions take
the form of the following series:

l1-10
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L 3 3
0. =, 5y 1) = ¥ e S ey |t o)t gr

n=0

@' (@
t®" ) + 1P (n) 1.38
ST EN Uy
e (ka) +T L, (k)
__ (1439)
: (0 g \fR w3, bp® =T Ipr1/2 ®
¥ k) 2 (2.40)
k n ‘1 k k
I =- ~1 1l1-
. 'Rz n(kfn 'EI (Eﬂ

The classical procedure involves the transformation of the sum
into an integral. From the integral, one extracts an integral
which can be evaluated by the method of stationary phase to yield
the reflected wave. Before we consider the form taken by the
result, we must make some geometrical definitions by introducing
Fige 1-5.

Source

Receiver

Fige 1=-5 Reflection from a Convex Surface

)
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0B _ kL N ¢ @' ) + 1t cn)
g6, r, r, ')~ - J +1/2
vy (n )
o x. Wﬂo 71)T (kn) + I‘t(l)(kn)
t!(ll)(kr) tl(ll)(kru) [Pn (cos ©) - i -:— Q, (cos 6)] dn 4
~ asiha ¢ +1I J
Z;'\/rr ] c;:gl
\/ %?ﬂﬂ couaz exp[lk(R°+R1)] (1-41)

Van der Pol and Bremmer showed that this formula agrees with the
approximation based upon the attenuation function Eq. (1-20)
provided the comparison is made in the vicinity of the first and
second lobe just above the horizon. However, for points well
above the horizon, the attentuation function fails to agree with
the stationary phase (geometrical optics) result.

It would be intcresting to seek a formula which agrees with the
classic result involving V(x,y,yo,q) for - points near the horizon,
but which is in better agreement with the stationary phase result
for points well above the horizon. Such a formula has been found
in the course of the studies made by the present author, It in-
volves the reflected field R(x,y,yo,q) which can be defined by
separating the Greenis function D(x,y,yo,q) into a free space field
Do(x,y,yo) and a secondary field which for points above the hori-
zon can be interpreted as a reflected field. The decomposition is

made as follows:

D(x,¥,¥,0a) = D (x,¥,7,) + R(x,¥,¥_,9) (1=41)
112
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g

Dok ¥.¥g) =35 | o (xt) wy(t-y) vitey) dt
2
exp!i ) [1 3+1 x4 )H(y-yo) I (1-42)
= e St— — — -
o Yo' T T b

1 "t) -
R(x,y,y .q)--z,J exp (ixt) ;’V'l(({)'(fll\";l((tt)) Wy t-y) wy (t-y ) dt (1=l3)

-0

The method of stationary phase can be used to show that
2 2
RG+%J'WMJ¢WMyw;;r

im/4) q 3 1] %*,
- A Ao AT AT Ly P ) (1-hh)

where

F =g @ v ) il gy (1-45)
It will often be more convenient to absorb the phase factor
in Eq. (1~-45) into the definition of the reflection function
end express the results in terms of the modified reflection
function S(p,;,go,q)

SGu £, by @ =exp (-w¥ ) RE+E, £+ 20, £2+ 28E,, @

1
u—bw-f ™ q+i# \/1( tRE+L) (1-46)

The new formula for the region of direct visibility then takes the
form

kR
U(eo r, rO’ I‘)S%
,’ ~ik (E /r: Al e |ikD, +D )| S(k, Ey £g @ (1-41)
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where ”
3 /3
(02 )
/3 D 1/3 (1-48)
() 2 a=(3) T

For points well above the horizon, p - o as ka + o since cos a > 0.
Therefore, we observe that with the above definitions of Lor &

and g our new formulation agress with the clessical results ob=- -
tained from a stationary phase evaluation of the exact solution.
The new formulation has the advantage, however, of leading to
results which are useful up to the horizon. In fact, it can even
be used in the region just beyond the horizon.

The asymptotic forms that appear in Eq. (1-4ly) and Eqe. (1=46)

are only valid provided the parameter p is large. From Eq. (1-48)
we see that since a tends to 90° as one approaches the horizon
that the value of p may become small (and even vanish) in this
region regardless of how large the radius of curvature may be

in comparison with the wavelength (i.e., no matter how large ka =
2na/\ may be). Therefore, if we continue to require that both

¢ end g be very large, but leave W unrestricted, we will find
that the asymptotic properties of the field will have to be des=-
cribed in terms of a function Vy,(&,q) which we will refer to as
the reflection coefficient function. If we use the leading term
in the asymptotic expansion described by Eqe (1=25) we find that

Yy

Vy1(E5q) = 1im J oxp|-12 y3/2+y 3/2
a) = 1in | o1 (M 5V
y +

v(&"'ﬁ"'ﬁ:v Yy yO' )] (1-'4-9)

1-1ly
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We can represent Vi,(£,q) by means of a residue series (involving
the roots t  defined by Eqe (1-8)) or by means of a Fourier inte-
gral.

exp ( 1§ty

Vi, (E,0) =exp (1 37 2\/"00
11 (&5 exp(T) wgl (ts_qz)[w“ts)]z

_ exp (i7/4 vi®)-qvt)
- —%S'”'ujexp B ST - aw,® (1-50)

However, Vll(g,q) is singular when £ -+ O and hence it is conveni-

ent to define a closely related funotion Vz(g,q) which is an entire

function of &.

V,(,q) = Uy (£,0) - (2VF &) Fexplin/l) (1-51)

If we use the properties which we have just cited, we can show
that the function S(u,g,go,q) defined by Eqe (1-46) has the
property

2 3
i ow (174
sw ¢, ¢, 9 ™ 5 V(-2 @ (1-52)
° goill " 0+“(t+§0) H

p>0

If we reconsider the function R(x,y,yo,q), we see that these

properties lead to

2 2
R(c +t°9 £+ 2uL, IO +2ﬂto, q)W

e (1)
fﬁfﬁtto + B+ )

Vi3, q)oxp(lﬂ*- i-g—ua) (1-53)

For points well above the horizon (i.e., for large positive values
of w, the reflection coefficient function Vll(-2u,q) has the
asymptotic behavior

gieiic
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vy Com 9t g |7 e (i 349 (1-5)
Yu A9 ST Vi em[i(3 - 2)] (1-55) .
q- A

When the asymptotic estimates for Vli(-Zu,q) are used in Eq. (1=52)
and Eqe (1-47), we are led back to the result which was given in
Eqe (1-41). However, Eqge (1=l41) was valid only for points well
above the horizon and we have now laid the groundwork for an
asymptotic estimate which agrees with the predictions of Eq. (1-l41)
when the parameter p is very large and positive but which has the
advantage of holding for points in the vicinity of the horizon.
Before we proceed to discuss the behavior on the horizon itself,
let us first obtain a result which is valid in the vicinity of

the horizon and which will contain the familiar Fresnel integral
which we should expect to encounter in this region on the basis

of the considerations of physlcal opticse. For our purposes it

is convenient to introduce the modified Fresnel integral K(t)

which was employed by Fock (Ref, 5).

K(t) = exp(—lrz- 1%)711? f exp(isz)ds
T

ol §)

= (1-56) ¢

From the property described by Eqe (1-51), we observe that

BK @8 +V,y (6, 9oz Yy (€0 9 (1-57)

£E>0

We will define the "horizon" to be the locus of points for which
1-16

LOCKHEED MISSILES & SPACE COMPANY

T NI AR RASR T R




P

x =Gy + \/yo) and we will introduce the parameter

£=x -V -\, (1-58)
which will be pnsitive below the horizon, zero on the horizon,

end negative above the horizone We also define the parameters
p and 1

Y VY _ )
p = Ty:—%o » "l.'—lJ-E (159)

Let F(x,y,yo) be the Fresnel diffraction field

2
F(X;Y:Yo) {/V—x— exp[i %(y3/2 + yg/z)] pK@r), & >0 (1-60a)

VY,

2

= § -;70 exp[i -g-(y;*’2 +y3/ 2)][-#1((-7)]

2
3 6-y)
+exP[i("1‘_2+%(y+yo)+—Zx_o-)] E < 0 (1-60b)

We can then show that

2
4
g gz o) + {2 w37 e 40
(o]

- 00
yO

If we let p tend to infinity we obtain from (1=61) the result

A4

V(an:YO:Q) - —ﬁ—— Vli(g,q) ——- G(x,y,yo) (1=61)
y V VI VY, 7% @
B =+ o

where G(x,y,yo) = 0 when £ > 0 and

O
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G(x,¥,y,) = exp[i(~ T 17 + 3y +y,) + -(z;fj—)—- )]
when £ < Os The result in Eqe (1=61) reveals that the function
V,41(£,q) describes the reflected field in the lighted region (i.e.,
£ < 0) and the same function describes the diffracted field in the
shadow region (1e6e, £ > 0)s¢ In the vicinity of the horizon we
need to employ the function Vz(g,q). On the horizon (i:,., £ = 0)
we find that

VOVF + V3,075 g0a) — [ z .3 T V2(0,q) Jexp(1a) (1-62)
y -+ o
Vo
where

A= %(y3/2 + y§/2)

In Fige 1=6 we present an illustration which shows the behaviof.

*Fig. 1«6 was previously presented by the author in Ref.b. Data
has been generated and a much more detalled plot has been begun.
However, the author became "slde-tracked" on this task when 1t
was found that as q - Q, where Q 1s real and positive, that the
data revealed an irregular behaviors The autiior became intrigued
with this phenomena and investigated the behavior of the enalog::e
of V2(0,q) in the problem of diffraction by a circular cylinder,
Computations made with the exact solution also showed similar
results to those found with the data for VZ(O,q). The eauthor
strongly suspects that the erratic behavior is caused by errors
introduced into the numerical work because of the fact that the
expression w;’(t) = qwy (t) which appears in the denominator of
the integral defining VZ(E,Q) vanishes for a point close to the
contour of integratione. The author hopes to be able to devote
time in the immediate future to the task of completing this very
detailed contour plot of ¥,(0,q)e

1.18
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of V (O,q) as a function of q. The locus for which ¢ = arg(q) =
u5 was previously presented in a paper by Wait and Conda (Ref.T).
The reader will observe that the form taken by q in Fige. l1=6 has
been taken to be

1
= 224 exp(ig) (1-63)
Tis form was chosen in order that the curves might supplement L
the curve presented by Walt and Conda who also used A in the man-
ner displayed in Eqe (1=63).
¢
If we apply the result in Eqe. (le61) to the function S(u,c,go,q)
defined in Eqe (1=46) we find that
S(uﬂ;:?;o.q)z_“o TV 7-&- exp( 1-5 I )l -nK(=7)+V, (-2, Q)] (1=6l)
t""”
W0
where
&t
= o (1=65)
T =-2un ) n-= I+
*
If Eqe (1-64) is used in Eqe (1=47) we obtain a useful extension
of the classical reflection formulae, On the horizon, p = 0,
and the theory reveals that we have the approximation
exp (1kR)
U(e,r,r ,I) = + M(e,r,r,) V,(0,q) (1=66a)
where ¢
A

Mlo,ryr,) = o= (F) nﬁm: ;,—01‘;5-5 e [1k@ +Dy)] (1-66b)

If we let r and r  tend to infinity, we obtain the result

1/3 /D D, (1-67)
U(gyryr O’P) ;F: +2(_’_) + o z(o Ql%@
r—e .
)
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The factor "1/2" which appears as the first term inside the
braces of Eqe (1-67) 1s the familiar Fresnel field factor for
the fleld on the shadow boundary. The effects of the curvature
of the surface which is tangent to the line jolnlng the source
and the receiver is contained in the term which contains the
function V,(0,q).

The function U(e,r,ro,PY arose in the problem of an axially sym-
metric source above a spherical surface. We can show that very
similar results can be obtained when the diffracting surface is

a clrcular cylinder. For this case, we can again use Fiqe 1=5
and define W, %%, and q as in the case of the sphere. Let us
denote the Green's function for the cylinder pr.olem by C(e,r,ro,
')+ The optlcal results for this function are of the form

lo: x 1 1) n SRULRLHY [ semaeiy

& COS O

7550+nm() cos a exp[ik(D+Do)” (1-68)

For points near the horizon, we can use use the same arguments
which led to Eqe (1=6T7) to show that

1/3[D+D '

1 ka o expli (kR + 7/4

€C@® T )m’[2+2(2) V=2iop, V2(0,q)] ST (1-69)
r— o

r — o

The case r, = cé?responds to the problem of reflection of a

plane wave from & circular cylinder. This problem follows from
the results given in Egse (1-68) and (1=69) is we use the approxi=-

mation
ikR exp (ikr
%.%'—RJ ~ _TEH(TO)_ exp (-1kr cos g ) (1=70)
o

and factor out the térm exp(ikro)/(vsnkro). We discuss the case
of a cylinder 1lluminated by a plane wave 1n more detail in
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Section 3.

Let us turn now to consider the two parameter functions which are
the limiting forms of V(x,y,yo,q). These have been discussed in
considerable detail by Logan (Refs 8).

When y =y, = 0 we obtain the function Vo(g,q) which possesses the
representations

V,§,9-= 21 V(, 0, 0, q

7T explin/4) Y ———z—‘zx"_(i:tﬂ)
s=1 8

_ exp(-1x/4) /_E i ¥, ® 1-71
- ”.{ exp(iét) V0 - awi® dt (1-71)

For £ > 0 the residue series in Eqe (1=71) converges fast enough
to be a practical means of computing VO(E:Q)o For £ - 0 1t be~
comes completely impractical to sum the residue series and it
becomes more attractive to follow Pekeris (Ref. L) and express
the integral in Eqe (1=71) in the form

_ w, (t)
Vo(ﬁ,q) = % ‘/—‘—k/exp(igt) 1 at (1-72)

W, (t) = qu, (t)
1 1
weoxp (i§x)
Pekerls then used an asymptotlc representation for the integrand
which, in our notation, is of the form
wy (t) 1

3
~

Wy " (t) = qwy (t) VE - ¢q

(1=73)

to suggest that the lntegrand should be broken into two components
as in the following equation:

1=22
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=

wy (t) _ L VE Wy (8) = Wy " (1) g
w'(t) = qu(t) VE=q (VB = a)[w (L) = qw(t)]

We can then use the property of the Airy function

Wy [texp(iZn)] = exp(idm)w,(t) (1=75)

to express V.(g,q) in the form

_ 18 _-:_ﬁ GXE(iétz
VO(E’Q) =3 / 1‘ / {E e dt
coexp (1§n

+ %‘/?/exp(igt) Fy (t,q)dt
0

+ é‘/g exp (= ﬁ_i_l Et) Pz(t,q*)dt (L=76)
where

o= e (s ) (1-77a)
1 TR - Dy (8) - iy (8)] :

VE wy(t) + w,” (¢)
VE + a0 ) [w,° (£) - g wy(t)

F,(t,q) = exp(ijn) (1=770)

Pekeris observed that the first integral in Eqe (1=76) leads to
the Weyl-van der Pol formula, i.e.,
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J
1 ( <
z,/ = / SXpULE) g4t =1 = 2gexp(=o?) /exp(az)da (1-78)
t-q
aoexp(i{a Y
where ¢ 1s the Sommerfeld "numerical distance"
o = q/~1¢ (1-79) £

Pekeris evaluated the integrals which contain the factors F,(t,q)

and Fz(t:q) by means of numerical integration. The author knows

of mo later writers who have employed these techniques to evaluate %
Eqe (1=76)s The technique of numerical integration is well known

for the case of the functions V,(&,q) and V,(g,q), but the decom-

position discovered by Pekerls has escaped the attention of those

writers whose papers the author has consulted. The integral in

Eqe (1=78) leads to the error function of complex argument,

The function Vo (£,9) can be shown to be a solution of the integral
equation

VO(E.q)=exp(l Es) ﬂi—?/{f\r(x q)exp[ i—= (£ x)]

le-x-210) giis  (2-80)

In Refe 8 the author has discussed representations for the two
limiting cases, namely

_"

t
v(g) Vo(g,o) = —xm-—i—"&)—/—fexp(lﬁt) v () dt (1=81)

AR (t)

t
u(x) =lim fo1eq?v (z.q)l 9’—‘Pi=‘—""19 g3/2 j exp(igt)-—((t)ld(l"az)
q —-w 1

In Fige 1.7 we 1llustrate the behavior of the real and the
la2);
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imaginary parts of u(f)e In Fig. 148 we illustrate the behavior
of the modulus of u(&)e

In Fige 1¢9 we show the behavior of the real and imaginary parts
of v(g)e In Fige 1410 we i1llustrate the behavior of the modulus
of V(g)o

For small values of £ we can compute u(Z) and v(&) from series
which progress in successive powers of 53 2. The theory behind
these representations has been developed In Ref. 3¢ The series

are of the form
(Text continues on pe. 1-28)

1.0 4
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o
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Fig. 1,8 Attenuation Function u(g)'(xodulul)
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1
In Eqe (1=83) the coefficients An are the coefficients of a(-3n+2)
in the asymptotic expansion of the logarithmic derivative of the
Alry function

0
Ai'(a) _ 3n-1/2) _ 11 .5 _1 151 1105 1
Al (@) - 2 Aget =-Ve-iat 57 6 12048 1172

n=0
_ 1695 1 = 414125 1 _ 59025 _1
1024 a7 65536 a17/2 2048 a10
+1282031525 1 2421 83775 1 +eeee (1-85)

8388608 021/2 262144 al3

(=3n+%)
In Eqe (1-8Y4) the coefficients B, are the coefficients of a 2
in the asymptotic expansion of the logarithmic derivative of the
derivative of the Alry function

d oy AL (@) _  Alfe) _ 1
da 0B A'@ =3rEh = o 310G = D By =5

n=0 3
avaell 7T 1 21 1 1463 1
VOt 4a 32 57 T6d 4 2048 11/

2121 1 495271 _ 1 136479 _1
1024 77 65536 _17/2" 4096 _10

+

_ 1445713003 _ 1 +268122561 1
8388608 a23/§ 262144 al3

ceee (1-86)
In Taeble 1=l we present numerical values for the coefficients An
and Bno

In Tables 1=2 and 1=3 we present numerical values for the functions

u(g) and v(g).

The author is preparing a revision of Ref. 8 in which computer
programs for these functions, as well as for V,(£,q) and V,(g,q),
will be given.

1=29
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Table 11

VALUE OF An AND Bn OCCURING IN ASYMPTOTIC EXPANSICNS OF THE
LOGARITHMIC DERIVATIVES OF Af(a) AND Ai’(a)

O OV EFWHHe B

10

Ay

-0.100000000000000000000D

01.

=0.2500000000000000000000+00
+0.1562500000000000000000+00¢
-0.2343750000000000000000+00~
+0.5395507812500000000000+00

~0.1655273437500000000000D
+0.631904602050781250C00D
-0.,28382080078125000000¢ 0D
+0.152830067276954650879D
=0.923857784271240234376D
+0.627145402831956744194D
-0.472420875728130340576D
+0.391093797395304136444D
=0.3529629188485443592070D
+0.344923594225291310522D
=0.3028590541673242114480
+0.408874819536233990133D
=0.491329314661619090110D
+0.627198459188666032326D
-0.847611398458811941308D
+0.1208973890556541256600
=0.181496999003719169264D
+0.2060712227905159673920
-0.472335609717781730361D
+0.8152770573647957202450D
=0.146831645154966902644D
+0.,275449757197776501747D
=0.537378756984207398462D
+0,108866223659917805940D
=0.2287104614243802303660
+0.49762975408876870081890
=0.1120053306415097156680
+0.260496208841598317131D
=0.625379032469004638302D
+0.1548249536347570439070
=0.39490815R161364723226D
+0.103689211790902314958D
=-0.280026594509852636416D
+0.7772460294729027465220

01,
01,
02
03
03¢
0b»
05
06+
07
08
09
10
11
12+
13
15
16
17
18
19
21
22
23
25
26
27
29
30
31
33
34
369
37
38

B
n

=0.100000000000000000000D

01,

+0.250000000000000000000D+00 -

=0.218750000000000000000D0+00»

+0.328125000000000000000D+00»
=0.714355468750000000000D0+00

+0.2071289062500000000000D
=0.755723571777343750000D
+0.333200683593750000000D
=0+172342419981956481933D
+0.102280640029907226562D
=0.6847766478363424539570D
+0.510385042383670806885D
=0.4190134175500750425270D
+0375636973284705591202D
~0.365073309173042538587D
+0.3823036645856400914490
=0+429119196798935784550D
+0.5139435428913010276410
=0+6541734453977020495600
+0.881828408318901625950D
=0.1254961777546632107620
+0.188024788284105658508D
=0.295829251279511604806D
+0.487657445864043740510D
~0.840488648956753985073D
+0.151169864003790799746D
=0.2832409862502998550210
+04551957349739728293224D
=0.1117037098931648841450
+0,234446449592475986762D
=0+509656139639392228718D
+0.114617212361596047251D
=0.266364897571689195131D
+0.639006344470836503258D
-0.158091618384036980004D
+0.4029841569270238636850D
=0.105746442975289905250D
+0.285421533273123163778D
=04791793924680840649638D

1-30

LOCKHEED MISSILES & SPACE COMPANY

SR

01,
01,
02
03
04
o4,
0S5
06
07
08
09
10
11,
12
13,
15,
16
17
18
19,
21»
22
230
25
26
27
29
30
31
330
340
36
37
38,
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Tabhle 1=2

THE ATTENUAT..ON FUNCTION u(g)

Real Imag, Modulus Argument
1. 0000 0 1. 0000 0 j
. 9802 0.0192 0. 9804 1.12
0. 9440 0. 0528 0. 9455 3.20
0. 8974 0. 0922 0. 8021 5. 86 !
0. 8429 0.1334 0. 8534 9. 00 4
0 7822 0.1738 0.8013 12,51 i
0. 7156 0.2123 0. 7465 16. 52
0. 6487 0.2434 0. 6929 20. 57
0. 5792 0. 2700 0. 6390 24,97 |
0.5090 0. 2902 0. 5859 29, 68
0. 4403 0.3035 0. 5348 34,58
0.3740 6. 3102 0. 4859 39.67
0.3112 0. 3105 0. 4396 44,94
0. 2526 0. 3050 0. 3960 50. 36
0.1991 0. 2944 0. 3554 55. 93
0.1510 0. 2796 0.3178 61.63
0. 1086 0. 2615 0. 2831 67.45
0. 0719 0. 2409 0.2514 73.38
0. 0409 0.2187 0. 2225 79. 40 !
0. 0154 0.1957 0.1963 85. 50 {
-0. 0051 0.1726 0.1727 91.68
-0. 0209 0.1501 0.1515 97.93
-0. 0326 0.1285 0.1326 104, 24
-0. 0407 0,1083 0.1157 110. 61
-0. 0458 0. 0898 0.1008 117. 02 q
~0. 0483 0.0730 0. 0875 123.48 f
-0, 0487 0. 0581 0. 0759 129, 98 .
-0, 0476 0. 0452 0. 0656 136. 50
-0, 0453 0.0341 0. 0567 143. 06
-0, 0421 0. 0247 0. 0488 149. 63 3
-0. 0384 0. 0168 0. 0420 156. 23
-0. 0345 0. 0106 0. 0361 162. 85 1
-0, 0304 0. 0056 0. 0309 169. 49 1
-0. 0264 0. 0018 0. 0285 176.13
-0. 0226 ~0; 0011 0. 0226 182,79 !
-0, 0190 -0, 0032 0.0193 189. 46
-0, 0158 -0, 0046 0.0165 196.13
-0, 0129 -0. 0054 0.0140 202. 81 [
-0, 0104 =0, 0059 0.0119 209,50
-0, 0082 -0, 0060 0. 0101 216.19
-0, 0063 -0, 0059 0. 0086 222,88
1=31
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Table 1=3
THE ATTENUATION FUNCTION ()

Real Imag. Modulus Argument
0.9901 0. 0098 0.9901 0. 57
0.9720 0.0271 0.9724 1.59
0.9486 0. 0444 0.9498 2,92
0.9210 0.6721 0.9238 4,47
0.8899 0. 0969 0. 8952 6.22
0.8559 0. 1221 0. 8646 8.12
0.8195 0. 1469 0.8325 10.16
0.7810 0. 170, 0. 7995 12,33
0.7410 0.1929 0. 7657 14,59
0.6999 0.2134 0.7317 16.96
0.6581 0. 2317 0.6977 19.40
0.6159 0. 2477 0.6638 21.91
0.5737 0.2612 0.6304 24,48
0.5317 0, 2723 0.5976 27.11
0.4908 0. 2809 0. 5655 29.79
0.4508 0.2970 0.5342 32.50
0.4115 0.2908 0. 5039 35.25
0.3739 0.2924 0.4747 38.03
0.3379 0.2920 0. 4466 40, 83
0.3036 0.2897 0.4196 43,66
0.2710 0. 2857 0.3938 46,51
0.2404 0.2801 0.3692 49,37
0.2117 0.2733 0. 3457 52,24
0.1850 0. 2653 0.3265 65. 12
0.1602 0. 2564 0.3024 58.01
0.1373 0. 2468 0.2824 60.91
0.1163 0.2365 0.2636 63.81
0.0972 0.2258 0. 2458 66.72
0.0747 0.2148 0.2291 69.63
0.0640 0.2035 0.2134 72,55
0.0499 0.1923 0,1986 75. 46
0.0372 0. 1810 0.1848 78.38
0. 0260 0.1698 0.1718 81.30
0.0161 0. 1589 0.1597 84, 22
0.0074 0. 1482 0. 1484 87.14

-0, 0002 0.1378 0.1378 90, 06

-0. 00687 0.1277 0.1279 92. 98

-0, 0122 0.1180 0.1187 95. 90

-0. 0169 0.1088 0.1101 98. 82

-0, 408 0. 0999 0.1021 101. 74
1-32
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Table 1=3 (Conttd)

Real Imag. Modulus Argument
-0. 0240 0. 0915 0. 0946 104. 66
-0.0265 0.0836 0. 0877 107.58
-0, 0285 0.0751 0.0812 110. 50
-0. 0299 0. 0690 0.0752 113.42
-0. 0309 0. 0624 0. 0697 116. 34
-0. 0315 0. 0562 0.0645 119. 25
-0. 0318 0. 0505 0. 0597 122,17
-0.0318 0. 0452 0. 0552 125,09
-0. 0315 0. 0402 0.0511 128,01
-0, 0310 0. 0357 0.0472 130.93
-0.0303 0.0315 0.0437 133.85
-0, 0294 0. 0276 0. 0404 136.77
-0. 0285 0.0241 0.0373 139. 69
-0, 0274 0.0209 0.0345 142. 61
-0. 5263 0.0180 0.0319 145. 52
-0, 0251 0.0154 0. 0295 148, 44
-0. 0239 0.0130 0.0272 151,36
-0, 0226 0.0109 0. 0251 154. 28
-0, 0214 0. 0090 0. 0232 157.20
-0, 0202 0.0073 0.0214 160.12
-0.0189 0. 0058 0.0198 163.04
-0.0177 0. 0044 0.0183 165. 96
-0.0165 0.0033 0. 0169 168. 87
-0.0154 0.0022 0.0156 171.79
-0, 0143 0.0013 0.0144 174.71
-0, 0132 0. 0005 0.0132 177.63
-0. 0122 -0. 0001 0.0122 180. 55
-0.0113 -0. 0007 0.0113 183.47
-0, 0103 -0. 0012 0.0104 186. 39
-0. 0095 -0.0015 0. 0096 189,30
-0. 0086 -0.0019 0. 0088 192, 22
-0. 0079 -0. 0021 0. 0082 ' 195. 14
-0, 0072 -0, 0023 0.0075 198. 06
-0, 0065 -0. 0025 0. 0069 200, 98
~0. 0058 -0.0026 0. 0064 203. 90
-0. 0053 -0, 0027 0. 0059 206, 82
-0.0047 -0, 0027 0. 0054 209.73
-0. 0042 -0, 0027 0. 0050 212,65
-0. 0038 -0. 0027 0. 0046 215. 57
-0.0033 -0, 0026 0.0043 218.49

1=33
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Section 2
THE ROOTS t OF wy’(t.) = quy(t ) =0
2,1 Notation for the Root Defining Equation

In electromagnetic diffraction problems which involve the propa-
gation of waves around a convex surface, one often has to solve
for the roots t of the equation

Wy (t) = aqwy (t) =0 (2=1)

where wl'(t) = dwl(t)/dt and q is a given "constant" which can
generally be related to the physical quantities in such a manner
that we can speak of q as being related to the "surface impedance."
The function wl(t) is the Airy function introduced by Fock (Ref.
1) and used extensively by him, by Wait® (Ref. 2), by Logan (ref.
3), by Logan and Yee (Ref. l), and by others. The function wl(t)
satisfies the Airy differential equation

4y _ty =0 (2-2)

and can be defined by the integral representation
in/3
o€

1 1.3
wit) = x| exp (% 2
-00

- zt)dz (2=3)

For real values of t it is convenient to resolve wy (t) into its
real and imaginary parts by defining

wy (t) =u(t) + iv(t) (2=l)

where, for real values of t, both u(t) and v(t) are real.

*wait denotes our wl(t) by wz(t), and our‘wz(t) by wl(t).

2=-1
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The integral definitions of u(t) and v(t) for real t can be
taken to be

v(t) =7-;-of.::os (5-; + tx) dx (2=La)
1 A x3 x3
u(t) =ﬁ-r-6[ [sin(—g + tx) + exp(——a— + xt) ]dx (2-4b)

The Airy functions are so fundamental in the mathematical discus-
sion of a variety of physical phenomena that it is almost unex-
plainable that such an important function had not received a
universally accepted notation prior to the beginning of World

War II. The author has observed that this function is now finding
its way into more and more textbooks, but the notation which seems
to be "catching on" the most firmly is that which is due to
Jeffreys and Miller (Refe 5). The functions which were tabulated
by Miller were denoted by Ai(x) and Bi(x) and defined by the inte-
grals

Al(x) = %fncos (5.; + x,t)dt (2-5a)
o]
Bix) = & fu[ sin (g + xt) + exp(-fai+ xt)] dt (2-5b)

o

Since Eqs. (2-4) and (2=5) differ by only a factor of the form V=,
it is very easy to employ both these notations since the con=-
version between them 1is

vit) =VrAi(t) , u(t) =vx Bi(t)

w(t)= Vr [Bi (t) +1Ai (t)] o wolt) = Vr [Bl(t) - lAi(t)]

2=2
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i\ The need for the Airy functions in the theory of radiowave propa-
’ gation during World War II was so great that each research group
adopted its own notation. In the classic work published just be-
fore the start of the War, van der Pol and Bremmer (Ref. 6) had
employed approximations for the Hankel functions Hél)(kr) which
involved the Hankel functions

: M), W@, 1M @, 1B
3 3 3 -3

and much of the computational effort associated with their work
& revolved around finding the roots Tg which were determined by
the equation

1) |1 2
exp(-i 7/3) H;/g; 5( - 21’8)3/ l 1 e
T e ese——r 2- \
/2 )
M (1, r 5 VI
H]/3 I 3 ( ZTS) e s
3‘ When Furry and his co-workers at the Radio Research Laboratory

at Harvard University became interestcd in these problems they

observed that by defining

2
g=-x

)

that they could simplify the theory by working with a set of
modified Hankel functions of order one-third which were defined

by means of the relations

3/2

s
1/3
2 1/2 .G) (2 .3/2) _ ,1/3 ()
dh 1/3 _ () 2 .3/2y _ (3\1/3.2/3 . ()
—djgz - (%) Panl) s (527 - (2)7 700, 50

2=3
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Tables of these functions (Ref. 7) were computed on the famous

Automatic Sequence Controlled Calculator (d6r "Mark I" as it came

to be affectionately called by its users) which had been presented

to Harvard University by the International Business Machines

Corporation in 19})i, In the introduction to the tables, Furry

points out that the functions are solutions of =

2

d™h

-—1 + X h, =0
2 A

dx

and that they are related to the Airy functions being used by
Miller and the English workers by means of the relations

hy (x)

h, (x)

k [Al(=x) - iBi(=x)]
k" [AL(=x) + 1Bi(=x)]

where

k = (12)1/6exp(-iu/6) . K" = (12)1/6exp(+in/6)

The digression which we have made above to point out some of the
differences in notation for the Airy functions is far from com-
pletes For a more complete discussion, the reader is referred to
a report by Logan (Refe 3), However, in order to proceed with
the study of the roots of w,”(t) = qw,(t) = 0, the author feels
that the reader should have before him the followlng relations:

Wy (8) = = VE(12) "/ Coxp (-13m)ny (-t) (2-8a) Q

= V7 exp(i§n)H£1)[§(-t)3/2; (2-8b)
= u(t) + iv(t) (2=8¢) .

= Vx [B1(t) + 1A1(t)] (2-84)

. = 2yn exp(in/6)Ai[texp(i§n)) (2-8e)
2-l, N
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From Eq. (2-8e) we readily see that the solutions ag of
AL’ (-a ) + q exp(iim) Ai(-a ) = (2=9)

are the same as the solutions of Eq. (2-1), namely,
Wyt (tg) = aqwy(t ) =0
provided we observe that

t, = ajexp(i}n) (2-10)

If we use Eqe (2-7) and Eqs (2-8b), we find that

wl'(t ) % (1)(5 ) v”E‘exp(-ilﬂ)Hél)(é )
wy (g ) (2)3HL1)(g ) Héiy(g ) .
where
- 2w/ - —(-2¢ REG (2-11)
s 3 3

Therefore, we observe from a comparison of Eqe (2-6) and (2-11)
that the roots t, which were studied by Fock are essentially the
same as the roots Tg-1 which were studied by van der Pol and
Bremmer' and by Bremmer (Refe 8)e

Since van der Pol and Wyngaarden (Ref. 9) were influenced by the
work and the tables of Furry (Ref. 7), their Eq. (l}), namely

h(ps) =Db h’(us) (2=12a)
can be shown to be

holpg) = b 0y (b)) . (2=12b)

Since the modified Hankel functions possess the propertics

#» 1
The relationship is ty = 2318_1 since Fock lets s = 1,2,3,.¢¢

whereas van der Pol and Bremmer let s = 0,1,2,¢.¢4
2=5
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J*

by (2) = [by(z"]" , By’ (2) = [y’ (")

(where the asterisks denote that the complex conjugate quantities
are to be employed), we observe from the property

_wl(e) byt (-ty)
wy (£g) hy (-t,)

(2-13)

that the roots ts are related to the roots g (of Refs 9) Dby
the simple property

t, = complex conjugate (-u,)

Further confusion has been fostered by the fact that a numbsr of
authors are employing an Airy function A(z) defined by

[+ <

A(z) =o[c08(¢3 - zt)dt (2-1)a)

which is related to the more conventional Airy function Ai(x) by
means of the relations

S

Ai(x) = A(-3‘~1Tx) , AL’ (x) = - Li A’ (-3%'2:) (2=-14b)

At

From Eqe (2=9) we see that
_ wl’(ts) _ exp(i%ﬂ)Ai’(-as) _ 3§exp(-i§n)A(3%as)

wy (6,) A1 (-a,) A(3%a,)

where t, and a, are related as in Eq. (2-10),

The remarks which we have made above are sufficient to show the
reader that he may expect to find the equivalent of Eqe (2-1)
appearing in many disguises as he looks through the literature,

From the property

() d - & w,’(t)
q =l oglw =
dt g[wy 1} Wl(t) (2=-16)
2=6
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we observe that the inverse problem to the finding of the roots
of Eqe (2=1) can be described as "studying the behavior of the
logarithmic derivative of the Airy function w, (t)."

The occurrence of equations such as Eqe (2-1) is not limited to
the radiowave propagation problems. For example, Jeffreys (Ref. 10)
considered an elastic wave propagation problem which led him
to study the problem of obtaining the roots & of the equation

AL’ (=g)

Al (-g)

where k is & constant,.
2.2 The Riccatl Equation

The roots 1, of Eqe (2-1) , ises, the roots of

wl'(Ts) - q Wi(Ts) = 0 (2=17)
can often be evaluated by observing that the Airy equation

wp ' (1) = 1wy ()

reveals that
da(r) d w’(71) wy " (1) [wl'(m)]z

dsy dt  wy(7) wy (7) w, (1)
or
dq > dt 1
— =t =q or —_—= — (2=18)
t dq ¢t = q

Eqe (2=18) is a common type of non-linear first-order differential
equation which is known in the literature as a Riccati equation.
It is a simple matter to obtain the initial conditions under
which Eqe (2-18) is to be integratede Eq. (2-8e) reveals that
wl(T) is merely a rotation of the function Ai(z)s The roots of

2T
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the Airy function and its derivatives are well known. Interest in
these roots goes back to as early as 1838 when Airy showed that

the "rainbow integral
o

W(m) =fcos[ %(w3 - mw)]dw
0

could be used to describe the maxima and minima of the systemn of
spurious (or supernumerary) rainbows which are observed near the
inner edge of the primary bow or the outer edge of the secondary
bowe Numerical results for these quanties depended upon finding
the roots of W(m) = O and W (m) = 0, Airy's first numerical cal=-
~ulations led him to a determination of the first minimum and

the first two maxima. By 1848 he had extended the results to find
the location of the second zeros Then, in a classic paper which
appeared in 1850, Stokes gave values (computed to L decimals) of
the first 50 zeros and the first 10 maxima. During World War II,
Miller (Ref. 5) obtained values (to 8 decimals) of the first 50
zeros of Ai(x) and Ai”(x). These results proved to be inadequate
for some applications being made by the present author, and in

1958 he received 15-decimal values of these zeros from Ge Fe Miller
and Pe He Haines at the National Physical Laboratory (Teddington,
England)e In the following year, Sherry (Ref. 11) published values
for the first 50 zeros which are accurate to 25 decimals.

Let us now return to Eqe (2=17) and denote the roots for q = 0

by Tg and the root for q + = by m:. Then we have

w(e) =0,  w’(rg) =0 (2-19)
h
== xz = asexp(ifn) . Tg = psexp(i%n) (2=20)

where a, and fBjare the roots of the Airy function and its derivative

Ai(-ds) =0 ’ Ai" (‘ps) =0
Values for these constants are given in Tables 2-1 and 2-2. Values
are also given for the "turning values" of the functions.

2-8
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Table 2-1

ROOTS AND TURNING VALUES OF Ai(=-a)

a
8

Al'(- as)

OO 3D U o

2, 33810 74104 59767

4, 08794 94441 30971

5, 52055 98280 95551

6. 78670 80900 71759

7. 94413 35871 20853

9, 02265 08533 40980
10. 04017 43415 58086
11. 00852 43037 33263
11. 93601 55632 36263
12, 82877 67528 65757
13. 69148 90352 10718
14, 52782 99517 75335
15. 34075 51359 77997
16. 13268 51569 45771
16. 90563 39974 29943
17. 66130 01056 97057
18. 40113 25992 07115
19, 12638 04742 46962
19, 83812 98917 21500
20, 53733 20076 77567
21, 22482 99436 42097
21, 90136 75955 85131
22, 56761 29174 96503
23. 22416 50011 21681
23. 87156 44555 35918
24. 51030 12365 89678
25. 14082 11661 48964
25. 76353 14009 82756
26. 37880 50521 37232
26. 98698 51116 06368
27, 58838 78098 82445
28, 18330 55026 37.645
28. 77200 91652 37435
29, 35475 05587 66288
29. 93176 41190 86556
30. 50326 86114 18505
31. 06946 85851 83756
31, 63055 56580 12659
32. 18670 96529 52051
32. 73809 96090 00269
33. 28488 46819 01402
33, 82721 49495 08652
34. 36523 21338 63659
34. 89907 02503 45312
35, 42885 61927 47888
35, 95471 02618 98629
36. 47674 66443 74809
36, 99507 38469 24501
37, 50979 50920 05016
38, 02100 86772 55254
38, 52880 83050 94249
39. 03328 33832 72514
39, 53451 93007 23018
40. 03259 76807 54176
40. 52759 66138 89718
41. 01959 08723 32490

+0, 70121 08227 20691
-0, 80311 13696 54864
+0, 86520 40258 94152
-0. 91085 07370 45602
+0. 94733 57094 41568
-0, 97792 28085 69499
+). 00437 01226 60312
-1, 02773 86888 20786
+1. 04872 06485 88189
-1. 06779 38591 57428
+1. 08530 28313 50700
-1. 10150 45702 77497
+1, 11659 61779 32656
-1, 13073 23104 93188
+1. 14403 668732 73553
-1. 15660 98491 16566
+1, 16853 47844 87525
-1, 17988 07298 70146
+1, 19070 61311 58776
-1. 20106 07915 19823
+1, 21098 75148 68287
-1, 22052 33738 97260
+1. 22972 07015 09681
-1, 23854 78753 29632
+1, 24708 99452 59407
-1, 25534 91404 75735
+1, 26334 52827 50799
-1, 27109 61262 18604
+1, 27861 76388 24258
-1, 28592 42371 22704
+1. 29302 89834 49956
-1, 29994 37525 11048
+1. 30667 93729 32094
-1, 31324 57481 80648
+1, 31965 19603 77514
-1, 32590 63598 38441
+1. 33201 66426 47702
-1, 33798 99181 42291
+1. 34383 27678 48983
-1. 34955 12971 47445
+1, 35515 11807 15907
-1. 36063 77026 40532
+1, 36601 57919 26784
-1, 37129 00540 34239
+1. 37646 47989 60084
-1. 38154 40663 17105
+1. 38653 16477 85955
-1. 39148 11072 66471
+1. 39624 57990 06725
-1, 40097 88839 49769
+1. 40563 33445 05322
-1, 41021 19979 25998
+1. 41471 75084 44110
-1. 41915 23983 05068
+1. 42351 90578 16189
-1, 42781 97545 15052

2=9
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Table 2«2

ROOTS AND TURNING VALUES OF Ai’(-p)

Py

A(-8,)

COARNrWBO-]| @

1. 01879 29716 47471

3. 24819 75821 79837

4, 82009 92111 78736

6. 16330 73556 39487

7. 37217 72550 47770

8, 48848 87340 19722

9, 53544 90524 33547
10. 52786 03969 57407
11. 47505 66334 80245
12, 38478 83718 45747
18. 26221 89616 65210
14, 11150 19704 62995
14, 93593 71967 20517
15, 73820 13736 92538
16, 52050 38254 33794
17, 28469 50502 16437
18. 03234 46225 04393
18, 76479 84376 65955
19, 48322 16565 67231
20. 18863 15094 63373
20. 88192 27555 16738
21. 56388 77231 98975
22, 23523 22853 43913
22, 89658 87388 74619
23. 54852 62959 28502
24. 198155 97095 26354
24, 82615 64259 21155
25. 45274 25617 77650
26. 07170 79351 73912
26, 68341 03283 22450
27, 28817 91215 23985
27, 88631 84087 68461
28, 47810 96831 02278
29, 06381 41626 38199
29, 64367 48146 32016
30, 21791 81244 68575
30. 78675 56480 12503
31, 35038 53790 A3035
31. 90889 29584 3u463
32, 46275 27462 35480
33. 01182 87766 34287
33, 55637 5R007 89422
34, 09653 80948 00138
34. 63245 70546 35866
35. 16425 99025 53408
35. 69207 11985 10469
36, 21600 81523 35199
36. 73618 20799 46803
37. 25269 881178 54148
37. 76565 91005 38871
38, 27515 88047 30879
38, 78128 97640 80369
39, 258413 90572 98596
39, 76,379 02724 68233
40, 78032 32499 03719
40, 77381 44056 64868

+0, 53565 66560 15700
- 0. 41901 54780 32564
+0, 38040 64686 28153
~0, 35790 79437 12292
+0. 34230 12444 11624
- 0. 33047 62291 47967
+0. 32102 22881 94716
-0. 31318 53909 78682
+0. 30651 72938 82777
-0. 30073 08293 22645
+0. 29563 14810 01913
-0, 29108 16772 03539
+0, 28698 07069 99202
- 0. 28325 27361 25021
+0, 27983 93053 60411
-V, 27669 44450 68930
+0. 27378 13856 46685
-0, 27107 02785 76971
+0, 26853 65782 82176
-0, 26615 98682 15709
+0, 26392 29929 60829
-0, 26181 14056 94794
+0, 25981 26701 51466
-0, 25791 60753 32572
+0. 25611 23337 79654
-0. 25439 33426 46825
+0,.25275 19925 76574
-0. 25118 20133 88409
+(), 24987 78484 21125
-G, 24823 45513 98365
+0, 24684 77011 60296
- 0. 24551 33306 87119
+0. 24422 78676 45060
- 0. 24208 80342 50143
+0. 24179 10550 23721
-0. 24063 41202 44844
+0. 23951 48554 15564
-0, 23843 10444 66267
+0. 23738 06563 33468
-0, 23636 18275 53143
+0, 23537 28399 36488
-0. 233441 21104 38024
+0, 23347 811753 92642
-0, 23256 96793 53833
+0, 23168 53648 03788
- 0. 23082 40630 53231
+0, 22098 46861 64426
-0, 22016 62197 J6428
+0. 22836 77166 46281
-0, 22758 82910 18357
+0, 22682 71133 87880
- 0. 22608 34059 36628
+0, 22535 64383 68475
- 0. 22464 55241 61432
+0. 22395 00171 78277
-0. 22326 93086 02552

2=10
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There are two series which have playcd such a role in the calcu-
lating of the roots 1,(q) of Eq. (2-17) that we shall refer to
then as the classical expansions, For small values cf g, we can
express rcs(q) in the form

o0
0 o, n
'Ts(q) =Ts+ z An('rs) q (2-21a)
n=1
where
1
A(m =2 (2-21b)
1
Ay =-—5 (2-21¢)
2T
1 1
A3(T) =— +—5 (2=-214d)
3T 2T
7 5
Ayl -—g - =5 2-21e
7 1ot g ( )
1 21 7
A (T) = + + 2-21f
2 51'3 201'6 879 ( )
__ 29 71 21
Ag(r) = - —5 8 11 (2-21g)

1 76 143 33
A, (T) = + + + 2=21h’
7 7'r4 4517 4:01'10 16‘r13 ( J

97 163 _ 429 429

A (1) = - - - (=211
8 14078 4079 arl? 198,10 )
Ay = 15 - 136618 . 676$1)1 . 24:31 . 71517 Tl
or® 567070 720ril  19271% 1287
2309 820573 37961 46189 2431
Ajp(m) = - 7 10 - 13" 16 . 19 (2-21k)
31507 113400710 1800713 1920716 2s6r
A - 1 - 10579 . 263651;2 . 46% - :>.9391.“:3 N 41921 ey
1178 330r® 13200012 10071° e40ri® 2567
31907 3089423 18592951 48347 _ 676039 _ 20393 . .
Agp(1) = - 5" 11 S0 20 23 (2-21m)

415807 2673007 356400‘1’14 480t 76807 1024t

(Text continues on p. 2=16)
2=11
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Table 2=3

COEFFTCIENTS FOR POLYNOMIAL REPRESENTATION FOR An(T)

m

A

n=1

«100000000000000000000E

n=2
-.500000000000000000000E
n=3

«500000000000000000000E
«333333333333333333333E

n=1L
=+.625000000000000000000E
-¢583333333333333333333E
n=25
«875000000000000000000E
«105000000000000000000E
»200000000000000000000E
n==6

-+131250000000000000000E
-.192500000000000000000E
Wy ey Uy

n=7

¢« 206250000000000000000E
« 357500000000000000000E
.168888888838888888888E

1428571126571 285711 2K

n=2_8

¢ 335156250000000000000E
-+670312500000000000000E
-¢1407500000000000000000E

n
1 1
2
3
0 ¢
+0 1
+0 2
3
Iy
+0 5

+0

1
+0 2
1 3
+0 %
6
1
1
+0 2
3
1 ¢
1 6
1
+0
1
13
S
L5
0 6
7
2-12

m
An

n=9

.552223250000000000000E
012 383333333333 3E
«944013 RBngBSBBBBSngE

¢ 214093 7111268077601 410E
1111711111111111111011E

n =10

-+549609375000000000000E
-+ 240567708333333333333E
-+21089 E
-.723609§u7u426 0776009E
-.733015873015873015871E

n =11

«16,023)37500000000000E
«1}59265625000000000000E
«11611100000000000000000E
.199737121212121212121E
«320303030303030303030E
«909090909090909090909E

n =12

=+ 287011101.5625000000000E
-.880259114583333333333E
~e100722916666666666666E
-.521687738119607:525298E
=,11557886270108,4923306E
-e 767361411 736L411 73611 TE

n =13

.5078%1796875000000000E
«169280598958333333333E
¢216316145833333333333E
+131031602132135,65766E
«372195660306771417878E
« 1104286 31,3286 313286 3, 3E
¢ 769230769230769230T69E
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Table 2=3 (Cont'd)

n m
Bn m Bn
n = .1.)4_ n=18
-,906860351562500000000E 2 1 =¢989111251831054687500E
- 326169 T726562500000000E 3 2.-.%6158525085uu92187u78E
=+ 46077968 T7500000000000E 3 3 -.897881,21.2239583333333E
-+ 31961193993506L.93506,9E 3 L =+93983621138512737,8097E
-.111057272727272727272E 3 5 =¢5693590250061.30041122E
-e17180311.299031:1299031129E 2 6--.19930080621348%6312313
=« 797393083107368821651E +0 7 = 3776977041 14,792806L615E
8 -.g28u7loo 7378932691 79E
n =15 9 =-.0848107085361987322768E +
L1037 34963281 250000000E 3 o
.4 7. 300,687500000000E 3 n =19
5 75101111111117111111E 3 1 1822017042866 7968750E
¢ 7623571 280961110596L18E 3 2 «0898676511113769531 250018
.318665989738656%0581AE 2 3 +18684.2506510416666666E
«196300897691373601046E 1 L +2.2095927933304398133E
0 119630089765137386186E 1 S W1423387725L56532921 T1E
e 666666666666666666666E =1 6 «57022866320915328976LE
T ¢1306275,115631898L506 %
n =16 8 .255;29292212?2gg9ugzlE
-2 2958631 8069726 56250008 3 9 +695560301 501120522019 F;
~a1222901181,0820312996E I 1O +5263157894 736812105261 ~
-+ 2052170835503, 722221 L e
- 1785731175202365921 1082 L n =
-s0498U6271053791.6067095E 3 1 =43370787029266357,,21.67E
=0 2129355796936259689917E 3 2 =4175200925521850565926 15
=+ 24235204 8901, 51 282378 2 3 -.38772no§857u218750000E
- 82110811 7031 TLOBIL TUE +0 I =074 36186085937500000E
5 -.3u9%592867187500000003
n =17 6 =e157807166173975061.0326%E
spsseatenusoos 5 ] st botlocs oo
oo 2sa000r. I} .9 =e3L341333672109550L1
:u5213220u§ulo71426552E L 10 =e069959153333766336057k +
22287611 5625000000000E U
0 6685717323118058L4119TE 3
«1009318045341,01173054E 3
0595861628567510920L 78 1
« 58623529111 761, 7058623E =1
2-13

LOCKHEED MISSILES & SPACE COMPANY

R P U O PWEFFEFEE W

O Pl




o

(=Y
o Pguwoopoun e

’_)
o PJwo oo

W - e g—
—

[uy

[
N oo Pwo oo

-

Table 2=3 (Cont'd)

m
Bn

n=21

«6260033C5435180664063E
«844860306172839506099¢E
«221807719711782510385E
«342215140304565429660E
«424838043379530747451E
«806048826489458882758€
«802630810485839843680E
«131854862585951041879E
«476190476190476190476E
«105318880057715360440€E
«238420821587937468108E

+0.

n =22

-.116664252376556396484E
-+201567174401580286976E
-+100291468665130554674E
-.668875046958923339788E
~.111744674790466258042E
-.552100998691229277871E
-+165799024261474609359E
-4393101246645185084099E
-+.890002620202451331069€
-¢232240243842043011943E
-+841890054668934984012E

n =23

«218111428356170654297E
«475390678258928571378E
«411886369631848301327E
«130866857013702392566E
«288142979686010313186E
«311546186453569473920E
«341843103881835937462E
«113410197140524639597¢E
«918026828171452694853E
«509116055648922610531E
«281456646361638824524E
«434782608695652173913E

’
OO Uy —~uvuniwuny

SO0oOVVOPpPpDOCOVISOWV

—_no—=0C0CwoosrO0OWV

3

| e

- -
N O Hw o WO P

-

1

5
9
13
2
6
10
3

7
11

;

B

n
n=24

~+40895892816T7819976607E
-¢110991397644613217352¢€
-.156932087522754605138E
-.256260928318500518773E
-+730359011452684181048E
=.153256841610405073658E
=¢703621666968027750568E
—~¢318224546027872606852E
=+691820872483155839496E
-«111027728216546349007E
-«899677545873361404822E
~e908517103462587376971FE

n =25

«768842784955501556397E
«256827714614291433175E
«562917033135728290407€
«400000000000000000000E
«502310619504261016790E
.182371638640773763620E
-679950468032934688407E
«144608711121365865053E
+87190205176204023671 7€
2425547281640320188148E
«241003322866257422826E
«276997776726792547006E
+103423234102239381071€E

n =26

-.144897294087767601013E
—«589565132268546919298E
=192132790058221428422E
—925721666221164031195E
=.935301599796819686773¢
=e449413675579853634576E
—e278221472923467098508E
-¢296795293913681030231E
-¢234005721157937292219¢
~¢226479555810393823808E

-+520950635707243485804E
~+826105244679143668050E

12 -.851539687318596132586E
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Table 2=3 (Cont'd)

n

n = 27

«273694888832449913025¢C
«134374505289727923837E
«629C0866922786249C990E
«115443475348750467116E
+193411054774931271846F
+109453011043905248659E
+106640162339384200720¢
«370370370370370370370€
«608390448695458306109€C
-616771069907658162333F
.108034426488708692999E
«112183141044618414315E
«239715060246644178531¢E
«567681032941667107411E

n = 28

-.518065325289994478226E
-+3043002454067744617754¢E

9 -.198742410461970741227E

-

2 -.10322532442857114C090E
2 -.3799145718793292839 79

6 -.263816640420520492100€
10 -,387252737866785193645E

3

=¢9641791185622695343281E
-.124571514935259269188E

7 -.159984327319558255999€
1 -.472786392241173595010E

2 -,325217504802706190441E

-.240750657777134261851E
-.679209804635185435452¢E

WNOV NN~ ®~N o DO

+
SN N OOOO~NWyD®O

m

>t =
N PWwE o o ppwso L -

I

12

1
5
9
13

o

10
1

11
15

12

2-15

m
Bn

n =29

«982537685894817113876E
«685094351527194882206E
.609C02390690492040579E
«T742069190714986568101E
.746728641280061006436E
.629896370727299426884E
.134377283861388064618E
.127842937775186016728E
«254805103662321567484F
«409120542583336357359€
.192941280292826168173E
+344827586206896551724E
.515047991621348825983E
.188461235530006903840€
«166129090115963891564E

n = 30

-.186682160320015251636E
-«153422227089157018162E
-.181695120445933290557E
—+455826866225021524436E

-«146856632785078664597E
-«149121739515205056488E
-.448529916041438925783CE
-+123492100520371284947E
-.520699807126342296485E
-+.103297458045362313138E
-«743068151696005201308E
-+956867527724712135595¢E
-.109871013399435436176E
-.513323141719165900825E
-.174738326124100379836E
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Numerical values for the coefficients which appear in Eqs. (2-21Db)
through (2-21m) are given in Table 2-3. We have expressed the
explicit dependence of the An(r) upon ¢ in the following manner:

1 M

(x) = ~ m om-1 (2-21n)

Ay ZTL An ‘
where M is the "integral part" of [(n + 1)/2]. The coefficients
in Table 2=-3 have been obtained by means of the NPREC subroutines
which have been discussed in the Preface. The reader 1s advised S
to be very careful if he employs these tables for n > 20 since
the format employed in the computer output has resulted in a table
In which m successively takes on the values 1,5,9,.++ in the order
listed under the heading "m",

When the magnitude of 7 1s very large, the dominant terms in the
expansion will be the terms

A () = %
A, (1) ! +
T = e 0 e
35 =
1
AS(T} ='5:§+ e e

We recognize these coefficients to be the coefficients 1n the
well known expansion

-1 -1
1 1 )
tang X _ cothx (1/x) = 5= [log(l + x) = log(l - x)] x
_qy .1 2.1 b 1 6 1.8 e <1
—1+3x +3x +7x +9x +oon’ X < .

Therefore, it appears that for very large values of ¢g that
the serles behaves like the serles expansion of

£ + (1AA®) tann™t (gAA0)

2=16 =
LOCKHEED MISSILES & SPACE COMPANY
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{”. Thorofore, in order for the series in Eq. (2-21) to converge, we
must require that the magnitude of (q/VQS) be less than unity.*
More precise definitlons of the radius of convergence of the
series in Eq. (2-21) will be possible after we discuss the roots

c -
t, for which ms(qc) = q,

2. We will postpone this discussion until

after we have considered another classical expansion for Ts(q)

For large values of g, we can express 1,(q) in the form
0
L) 0 -n
Tg@ =7+ ZBD(TS) q
: n=1

where

By(1) =0
B =3

| B =%

{‘ R0 -5
B =157
B =77 +35
Ba(-r) = -g—g 72
%Uj=;r4+%%r

(2=22a)

(2=22v)
(2=22¢)
(2-224)
(2=226}

(2=22r)
(2=-22g)

(2=22h)
(2=221)

(2=223)

*
The author has not found the time to investigate the possible

of the form

o
’ Ts(q) = T: + (1/VT:)tanh_1z +:E: cn(mg)zn
n=2
where z = q/VTg .

¢ 217
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advantages of rearranging the series in Eqe (2=21) so that it is



97 3 h23
Blo('c) e i (2=22Kk)
175 2520
1o T ,
() Lo = e (2-221)
Byqt7 "] T e G
( 2309 4y, 1002 (2-22m)
= — T -
P12 3780 27216
1 2746l 11781
313(T) = —— 16 + 13 + (2-22n)
13 163800 65520

Numerical values fcr the coefficients which appear in Egs. (2-22Db)
through (2=22n) are given in Table 2-4, We have expressed the
explicit dependence of the Bn(T) upon 1 in the following manner:

M
B (1) =§ B‘r: L (2=220)
-

where M is the "integral part" of [(n + 1)/2]. This definition
1s quite "wasteful" since the series actually progress in succes-
sive power of 13. However, the "book-keeping" is somewhat easier
if we use the form in Eqe (2-220) so as to have a single form
which 1is useful for all n Instead of having one definition for
n=1,4,7,10,¢¢.4 another for n = 2,5,8,11,... and a third defi-

nition for n = 3,6,9,12,....

When the magnitude of T 1s very large, the dominant terms in the
expansion will be the terms

By (1) =1
BB(T) =%¢3 + 00
BS(T) =%TS + s0

(Text continues on pe 2=29)
B (T) =lT7+ooo
i 7

2-18
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Table 2- U4

COEFFICIGNTS FOR POLYNOMIAL RuPRuSSHENTATION FOR Bn(T)

gt
n
n=1

«100000000000000000000E 1

n=2
+0s0
n=3
+060
«333333333333333333333E +0
n=»,
« 250000000000000000000E +0
+0e6 0
n=5
+0e0
+0.0
¢199999999999999999999E +0
n==56
+0es0
. 368888888888888888888E +0
+0,0
n=7"1T
« 17857128571 28571 L.28E +0
+0a0
+0s0
«11,2857128571, 26571 42E +0
n=28
+060
+0,0
-h83333333333333333333E0+8
+0e

m

onfFEwn e Ul wi B viH=wmn - uEw o -

~OoM\niFwih =

m
Bn
n=9
+060
.506172839506172839506E +0
+0,0
+06 0
«1111211211221241112111E +0
n =10
.16785¢1u2857142857142E +0
+0,0
+06 0
55428571285 (1285714 E +0
+060
n =11
+0.0
+0.0
e 7969565036565656565655E +0
+0.0
+0.0
L20909Y0v09090909090909E -1
n =12
+0.0
2692313345091 1228685Y9E +0
+0.0
+0.0
H10BL65608U65608U6560E +0
+0.0
n=13
«179807692307692307692E +0
+0.0
+0.0
510769230 76923C 76923 1
+0.0
+0.0

o 769230769230769230769E -1
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Table 2-l (Cont'd)

B
n =1l
+0.0
+0.0
« 17569L415813u463432510E )
+0.0
+0.0
«65TTN06T72026386312099E +0
+0.0
n=15
+0.0
FTU186262982559278653E +0
+0.0
+0.0
«215u86067019400352733 |
+0.0
+0.0
2 666666666666666666666E -1
n =16
«208001373626373626373E +0
+0.0
+0.0
«353uB66TY9866TIVE66TIE 1
+0.0
+0.0
cO9TTIBINTTIBOUTT IBOUGE +0
+0.0
ne=1l7
+0.0
+0.0
«310391373159813869430€ |
+0.0
+0.0
«28782871532u513643840E )
+0.0
+0.0

«588235294117647058823E -~

O O~ ONNAEw D -

[
~onEwno - O\ o~ O NLEW N

=
O\ ™

2=20

By

n =18
+0.0
«139632680457783338441E 1
+0.0
+0.0
«618831535268572305608E 1
+0.0
+0.0
«732516865850199183530€ +0
+0.0

n=19
«253145914236139800049E +0
+0.0
+0.0
« T587539052u2627047136E 1
+0.0
+0.0
«367279988182243821340E 1
+0.0
+0.0
«52631578947368U4210526E -1

n=20
+0.0
+0.0
«535450640036152018721€E 1
+0.0
+0.0
«9869U558376989T49538SE )
+0.0
+0.0
«71632963768257T88590492E +0
+0.0
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Table 2= (Cont'd)_

m
Bn
n =21
+0.0
«2C2TU5U1T063ET I QUUYLE 1
+0.0
+0.0
« 15 THL038390U022705127E 2
+0.0
+0.0
JU53178LCTC10206556690E 1
+C.0
+0.0

MTEI90LTHIF0UTOHIFOUTHE -1
n= 22

«319U0253120939211164T7E +0
+0.0
+0.0

« 1SUCH2THYIB205UVBIUIZZE 2
+0.0
+0.0

AUT2I8UYT60TSH2VY6 11381 2
+0.0
+0.0

«TYOBTI9STISTO15121532TE +0
+0.0

n=23

+0.0
+0.0
0897819138906 71 18850E |
+0.0
+0.0
29 190960C007067913B053E 2
+0.0
+0.0
e OUUITIVEH29UL2L5 1 1692E |
+0.0
+0.0
cU3UTHB26LB695652173V13E -1

n

[
SI::O\OCD\‘IO\\RJ:‘MI\)H

O O\NONWnE\wn =

2=21

m
Bn

n=2L4

+0.0
c2GT219554537243524432E 1
+0.0
+0.0
e 3696243556 1TULU21THUIS9E 2
+0.0
+0.0
208798 T7T75752038BH21212E 2
+0.0
+0.0
8158357351855803u4681T7E +0
+0.0

n=25

LLlu012948280516476003 +0
+0.0
+0.0

JA00B3IAT05TUZ23TIOTNLH6E 2
+0.0
+0.0

LUIBU02696363921738934E 2
+0.0
+0.0

L60223253038CUb1T06099E )
+0.0
+0.0

L4000002C0000000000000E -1

n =26

+3.0
+0.0
« 19253422079 139393GT79%¢ 2
+0.0
+0.0
o JUT1666ULC397T124134604E 2
+0.0
+0.0
28U 16U55967603149U690 2
+0.0
+0.,0
8386311722 7¢00C3732591E +0
+0.0
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Table 2=l (Cont‘'d)

m
Bn
n=27
+0.0
«438946419058804238827E )
+0.0
+0.0
«819389915648406185682E 2
+0.0
+0,0
« 719893 1574591626546954E 2
+0.0
+0.0
«TLU551208285921380796E 1
+0.0
+0.0
«370370370370370370370€ -1
n= 28
<OUTIINT2TUU6052106553E +0
+0.0
+0.0
«S5T08CO9U6063368612048E 2
+0.0
+0.0
«150240129621784630233E 3
+0.0
+0.0
«3T7619T7673481907091305€ 2
+0.0
+0.0
«85959869006250945754L1E +0
+0.0
ns=2
+0.0
+0.0
e253TUUU3TT99965565890€E 2
+0.0
+0.0
«19UuL21833629856u8T095E 3
+0.0
+0.0

« 12183408358726292u4343E 3

m

GEGREB v ovonswmm

BRELREBe ovovrwm -

2=22

B

n = 29 (Cont'd)

+0.0
+0.0
«851605626923321082365€ 1
+0.0
+0.0
«344827586206896551724F -1

n = 30

+0.0
«6520693145494790245T7E 1
+0.0
+0.0
< 173986394824 110754194 3
+0.0
+0.0
«2686034240569U2921LLIE 3
+0.0
+0.0
JUuBULUCO309u50673263990E 2
+0.0
+0.0
«879005106581182320399E +0
+0.0

n=31

o 1375609654 1037550570E +0
+0.0
+0.0

« 105931353715486L14L2296E 3
+0.0
+0.0

JU15917190062626618097E 3
+0.0

_ +0.0

«17842497T0L11309017669E 3
+0.0
+0.0

«963108702619458955029¢E 1
+0.0
+0.0

«322580645161290322580E -1
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Table 2=l (Cont'd)

e

+0.0
+0.GC
2U192L48231668984000386E 2
+0.0
+0.0
JUSHTIHBOUG282LBBIOS5HE0E 3
+0.0
*0.0
Ju530001033u3004821725E 3
+0.9
+OCO
JHI0U3IS6HV098580932060E 2
*o.o
+0.0
+B9T0633072u1917627124E +0
+0.0

n = 33

*0.0
oY T3305LI0627TU65YITOVTE 1
+0.0
+0.0
«3572L6430934908270574E 3
+0.0
+0.0
820514 506333505U9251%8E 3
+0.0
+0.0
02592699 166253536099041E 3
+0.0
+0.0
« 1078806532295894 86051 2
+0.C
+0.0
«303230303030303030303E -1

m

C\C O~ v\ wn

ELREE

’
-

iy
-

58

O DO~ O W N

10

Bm

n
n =3l

L100635664362186062203E 1
+0.()
+9.0

L1931590Tua11871658902E 3
+0.0
+0.0

Li0T862153CNT8OTH33271E 4
+0.0
+0.0

LT728377704105986Y58736E 3
+0.C
+0.0

L155369u62TuB6T306T546E 2
+0.0
+0.0

L9139Lu576031068T7869301E +0
+0.0

n=35

+0.0
+0.,0
«6LBYIC/S5BLI2U52HYSTILE 2
+0.0
+0.0
c1033001C1C39797622349E &4
+0.0
+0.0
< 1516U5668I4BCITHEBTI6E L
+0.0
+0.0
«3LT955627552342743931E 3
+0.0
+0.0
« 1198UBZ219Y53929999TBT2E 2
*0.0
+0.0
«2857 142857142857 14285E -1
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Table 2=lf (Cont'd)

mn

Bn

n= 36

+0.0
«145855972182003225723¢ 2
+0.0
+0.0
«T140T2457090325560480E 3
+0.0
+0.0
«232746675958386U466983E
+0.0
+0.0
« 1125466599956 19454964 &
+0.0
+0.0
«920225807542393257765E 2
+0.0
+0.0
« 929794 17388023448 1875E +0
+0.0

n = 37

. 138882245330245081978E 1
+0.0
+0.0

«3u7208602601564697373E 3
+0.0
+0.0

«265621102200827879020F &
+0.0
+0.0

«265600600709386626111E &
+0.0
+0.0

HOTT53264383959057265€E 3
+0.0
+0.0

«132193093687430132933E 2
+0.0
+0.0

«270270270270270270270€ -1

m

el e el el
5E5R0GELREEvomwonrwn =

heleclo e NV Ward VI NI

10

B

n
n = 38

+0.0

+0.0
«112703307190175578946E 3
+0.0

+0.9
«225003818225715207750E &
+0.0

+0.0
<U6TB09904302998191936E &
+0.0

+0.0

L 16814155 734981 7T696730E &
+0.0

+0.0

+ 110599106L464364087BI1LE 3
+0.0
+0,0
JI637TE 0
+0.0

cUUuT26195

n= 39

+0.0
«219305190621489160779€E 2
+0.0
+(.0
« 139619 17816L6LTOV16059E &
+0.0
+0.0
«622326727508128649438BE U
+0.0
+0.0
JUUNOTHINIUBLUSH63BPI2KTE &
+0.0
+0.0
«615905494956780323200E 3
+0.0
+0.0
« 1UUBOT636T066TB639639E 2
+0.0
+0.0
« 2564 102564102564 10256E -1
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Table 2=l (Cont'd)

m
Bn

n= L0

193517278781 1148409888 1
+0.0
+0.0

«6016753112401L319115503E 3
*0.0
+0.0

62T18B863T079385633404E UL
+0.0
+0.0

886558 750601482211301E 4
+0.0
+0.0

22UUCH2162C085819T7T3662E 4
+0.0
+0.0

«131301069059234590TB0E 3
+0.0
+0.0

«9588U009C0S2TI1082TUIBE +0
+0.0

n=4

+0.0
+0.0
s 183685065u29C390146058E 3
+0.0
*0.0
UT61625299667231u5118C U
+0.0
+0.0
«135156/4102:2118691668E S
+0.C
+0.0
ST 16UU69139952368062058E U4
+0.0
+0.7
ST96UTS0212T6BUTOH0ULOTZE 3
+0.0
+0.0
1579U57u23332687 1THU9E 2
+0.0
"0.0
«243902439024390243902E -1

m

OO ONULETW N

O o~ oW

10

19

2=25

m
Bn

n=,2

+0.0
.330683,2,2322L4854988178 2
+0.0
+0.0
. 268014536559658499ULI1E U
+0.0
+0.0
< IHB95640311338162UT728E 5
+C.0
#0.0
+ 159883034290892282070E 5
+P.0
+0.0
«3U5436 1420824698394 U4
+0.0
+C.0
< 15LU0231066L294965:3L5E 3
+0.0
+0.0
e912221447916023CH0T30C +0
*‘).0

n=.43

LL2T187TT7T1IUL305H80366205E 1
+0.0
+0.0

S MUBLOULESHIPIBULOUOTIE U
+0.0
+0.0

«HU3DI9H26365L6U376930€ 5
"0.0
+0.0

2210568506688 V57272400 5
+0.0
+0.0

111673514 T76234589U471E 5
+0.0
+0.0

13137640267 5827566633E 4
+0,0
+0.0

e 1TV13227911530U294ULITTE 2
+0.0
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Table 2=l (Cont'd)

By
n = 43 (Cont'd)

~+0.0
«232558139534883720930€ -1

n=L4
+0.0
+0.0
«298U42T768T0T1651121298E 3
+0.0
+0.0
«983584L4T729T616TBUSQOTE 4
+0.0
+0.0
.37002283004 1062198861E 5
+0.0
+0.0
«27635640602956603457T1E S
+0.0
+0.0
JUTB3418160344UI0585THTE L
+0.0
+0.0
« 17980999864 1 1S4 17SL3E 3
+0.0
+0.0
«98U9L00969T1362322405E +0
+0.0

n =45
+0.0
«499857133083891529330E 2
+0.0
+0.0
« 5065249629 148182361228 &4
+0.0
+0.0
38804379714 1578031557E S
+0.0
+0.0
«532587875016492368581E 5
+0.0
+0.0

1k

16
17
18
19

2l
22

O N ON\NEW N

| g

2=26

Bm
n
n = L45 (Cont'd)

« 1691197979088 3669T3TE 5
+0.0
+0.0

e 1272333403T7T134198246TE &
+0.0
+0.0

« 1850 15449499883 TTHMITE 2
+0.0
+0.0

0222222222222222222222€ -

n=U

«38LTONL24LTOIO5UTIOSO0E )
+0.0
+0.0

«16912685421920507T4072E
+0.0
+0.0

«316688065u41289280403E S
+0.0
+0.0

+807649034635335018204E S
+0.0
+0.0

2U60U52673601165755358E S
+0.0
+0.0

«OUPOTOO6PU3U0OTULE28B98IE 4
+0.0
+0.0

«207671056924903042637E 3
+0.0
+0.0

«997058337716530535067E +0
+0.0
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Table 2=l (Cont'd)

B

n
n = L7

+0.0
+0.0
«4B3529H65436153276786F 3
*0.0
+0.0
«199031654942886173133C 5
+0.0
+0.0
968U 188364002272uT9u8E 5
+0.0
+0.0
«983113CL71637T856U3434E 5
+0.0
+0.0
J2H9TQT 227 T1482L 143694 5
+0.0
+0.0
«15T695016U78891751363E 4
+0.0
+0.0
19901150334 1809346990E 2
+0.0
+0.,0
212T76595TLUH 6608510638 -1

n=)8

+0.0
1972060739146 814U6LTE 2
+0.0
+0.0
CFUNSOUUROS5LULS56L6TUITE U
+0.0
+0.0
PNTBYSHITBH2532218079C 9
+U.0
"“-Q
«1665L01UI102CTU2TI595E 6
+0.0
+0.0
TU29365069VTUTOB3TTIZE 5
+0.0
+0.0

e
R H O 0 =N D

MM RO R NI N B 1 D
VIE LN OO DO 0\\;;3;—\»

2=27

i
Bn

n = 48 (Cont'd)

«86T728962998604T7549843E 4
+0.0
+0.0

238069250 1 TL20, 1135+ 3
+0.0
+0.0

« 10086296880292310G263CE 1
+0.0

n = L9

OUTTHE591737586558132UE |
+0.0
+0.0

«32T73U8BY1236L2166396TUE U4
+0.0
+0.0

.683852L29721010508636E 5
+0.0
*0.0

«22530951882C853378955E 6
+0.0
+0.0

+HTU375106901002339348E 6
+0.0
+0.0

« 360507 1589712501 77u68BE S
+0.0
+0.0

«1932631095537884T77056E 4
+0.0
+0.0

«2132997198u40503289192E 2
+0.0
+0.0

«2040816326535061224L89E -1
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Table 2=l (Cont!d)

. o
n =750

1 +0.0

2 +0.0 o
3 ,75159920769608696296UE 3

L +0.0

5 +0.0

6  .3956615666842224857113E 5

7 +0.0 -
8 +0.0

9 .2u394206931435L378123E 6

10 +0.0

11 +0.0

12 [ 326988480982u877387T68E 6

13 +0.0

i +0.0

15 .116523564381858609189€ 6

16 +0.0

17 +0.0

18 . 114008261711473815314E S

19 +0.0 )
20 +0.0

21 ,2710859782353u6670236 3

22 +0.0

23 +0.0

2l ,101970086223180909526E 1

25 +0.0

[I'ote added 1n proof:= The user who wishes to conserve storage
in an slectronic computer may find it convenient to replace Eqe
(2-220) by

K
m z ;C? 1:3('1-1)

3=

By(t) =«

where, if we let [++¢] De interpreted as "the integral part of",

p=(n+1)-3[(2n+1)/3] , K=[(2n+1)/3] » [n/2)
For example, if n = 10, we would have 4 = 0, X = 2; if n =11,
we would have g = 2, K = 2; and if n = 12, we would have p = 1,
K=2o]

2=28
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As in the discussion following Eqe (2-21), we recognize the coef-
f ficionts in the expansion of x tanh  x and observe that the

: behavior of ¢s(q) for the cases in which the magnitude of m: is

r large is given by

T la) =10+ # tann™ WA%/a) , |VET/a| <2
L]

f Since this result suggests that we must require that the magnitude

] ? of'ngyq be less than unity in order to employ the expansion in
Eqe (2=22), we see that as the magnitude of 1: increases, the re=
gion 1n the q=plane for which thls expansion can be employed

; "shrinks" until it coalesces upon the "point at infinity." This

is in sharp contrast with the expansion in Eq. (2=21) since it

can be employed in ever enlarging regions in the gq-plane as the
magnitude of 1: increases.

We observe that the roots for q = 0 and q - « lic along the line
{: arg(q) = 60°, and lie in the first quadrant of the t-plane. Much

attention has been given in the literature to the study of verti-
1 cally=-polarlized waves propagated over the convex interface between
free 8pac® gnd a highly conducting homogeneous sphere. In this
case, the impedance parameter has a phase of the order of L5%
4 We will refer to these as the "Watson modes" since thls was the
l type of problem in which Watson (and later van der Pol and Brem-
mer) was interested nearly fifty years ago. Since World War II
there has developed an interest in the propagation of vertically-
polarized electromagnetic waves over the convex surface of a per-
fect conductor which is either

a) slightly rough

b) covered with a thin dlelectric layer, cr
r ¢) corrugated,
These modes were discussed in a paper by Elliott (Ref. 12) and we
shall therefore refer to these as the "Elliot modes.," The very im=-

5{ portant problem of absorbing layers upon a convex surface can be

2=29
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often shown to correspond to the case in which the impedance
parameter q has a phase of the order of 900. ‘'herefore, the
applications which are being encountered are such that it be=-
comes quite important to be able to find the roots 1s(q) for
an arbitrary value of q. Therefore, it has become important to
study the behavior of the logarithmic derivative q(t) in order
to understand the mapping specified by the functions ts(q) and
a(g)e The mapping is found to possess certain critical values
T:(q) for which

T: = qi = [Wl' (T:)/wl('t:)lz (2=23)

We often refer to these points as the "saddle pointse" It will
be observed that these polnts are singularities for the differ-
ential equation for dt/dq given in Eq. (2-18)

Imag 7

2,0 {
1.5 1
1.0 -

005'

¥ ¢ ! Real 1
0 0.6 1.0 1.5 2.0 2.5 '

Pig. 2-1 The Logarithmic Derivative q(t) = w,° (t)/w, (1)
( phase , = = — — — modulus)

2=30
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In Fig. 2-1, we have attempted to illustrate some of these
properties of the logarithmic derivative function q{t), with
emphasis upon illustrating the saddle point, the Watson modes,

and the Elliott modes. A more detailed illustration is given
in Fig, 2=2

#
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Fige 2=2 The Logarithmic Derivative q(t) = wlt(T)/wl(t)
(

phase , o« = — -~ — modulus)
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The critical points ¢: correspond to points at which two modes

coalesces They are very important in determining the radius of
convergence (in the q-plane) of the series which we have given

in Egse (2-21) and (2-22). The first two of these points have

been located at

Qo = 1e73lexp(119.29°) q, = 24135exp(123.52°) -

The approximate location of the first 20 saddle points (or criti-

cal points) is given in Table 2-5., For s > 3, these critical .
polnts can be found from an asymptotic representation. From the

definition given in Eqe (2=23), we see that the location of the

critical points is equivalent to the problem of finding the roots

of the function f(g) = [wl'('l:)]2 - T[ul(T)]zo We can show that

Table 2=5
THE CRITICAL POINTS T: AND CORRESPONDING VALUES OF q, ‘)

s Real xg Imag T: Mod q, Arg q, (deg.)

g 2.3u8 1,869 1,731 19.29

2 3011 3-3&1 24135 23452

3 3e'(TL bhe57 2.433 25.25

L u.gSg .65 24672 26,21

5 L1089 6,658 2,875 26463

6 5 09 74591 3.053 27.26l

7 % 8.472 3a21 274586

8 85 9.311 3435 g «836

9 10.11 34491 284036

10 7.23u 10.88 3,616 28.200

11 Teb651 11,636 3.732 284337
12 8.056 12,361 3,841 28.453 v
13 1450 13.066 3.945 284553

1y «035 13,752 LeoL3 28,610

15 9.212 .42 o137 284717

16 9.580 15,07 L. 227 28,785 .
17 9.941 15.718 le313 28,815
18 10.295 16, lie 396 284900
19 10.6%3 164966 Lol 75 28,949

20 10,986 17.572 l}e552 28.99&

2=32
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£(g) 1s a solution of the differential equation

3
—-§df-u¢$f-+2f=o
dt dv
This differential equation can be used to generate a Taylor serles
for f£(t). If we then use the fact that f(rg) = 0, we see that the
finding of the roots is reduced to the problem of inverting the

series
Z ——-)-(n) (2o . gy

f(tg) =0 =1£(7) + £ () (g = 1) +
n=2
Since f’(7) = = [Wl(T)] and £”(g) = -2w, (t)w; " (t), it is a rather
straight foward calculation to find a more accurate value of T:

once we know wy (1) and wy’(t) at a neighboring point 7.

Our study of the asymptotic location of the Tg for s -+ «» has indi=-
cated that they can be represented in the form

T: S(s)exp[i(in = T(s)] (2=2La)
where

-1
S(s) = 3/ (X2 + Y& » T(s) = gtan " (¥/X)

where X = X(8) ani1 Y = Y(s) possess the asymptotic behavior

log(lons)
X(8) - 213 = (2-241p)
S - 2ns
3
Y(s) ———=1log[lons -~ — log(l2ns)] (2=2Lc)
S8 - o ns

If we study the behavior of the lines of constant phase in Fig. 2=2
we observe that when 30°< arg q < 210° that all the root loci which
start from ¢g move along paths that end up at T . However, for
-150 < arg q < 30 there is a type of ruot loci which starts from
10 but which "slips away" and runs off to infinity. We will desig-
nate this root as 7,(q). From fig. 1, we see +hat the root t,(q)
corresponds to 1, (q) for -139,2 < arg q < 19,2° , to Tz(q) for
=153, h < arg q < -139.2 and 19, i § arg q < 23. u , etce

2-33
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For the special case of the surface wave modes which we have
designated as the "Elliott modes," the impedance parameter is
characterized by arg q = 0°. For this case we can compute fco(q)
for q >> 2 by means of the relations

Real t.(q) =~ 2,11,1 1 5 1 .11 1 539 1 . 8337 1
Tola) = ¢ *2qt8 4*32 7 *32 10" 512 15 * 2048 16
q q q q q .
9659 1 _ 416348 1 -25
+512 "19 * 4086 22 +tO0(a ) (2=25a)
q q -
1 3t
Imag 'ro(q) i 2qaexp[- — q3 -l - 3 - z
3 129q° U48q
397 éLpe( 248025 ] o
- - - - ¢ 90 2-2 b
Eﬁﬁqg. 1536q 2 15360q 5

The asymptotic expansions which we have given in Eqe (2=25) for
the case of q real ’(i.e., arg q = 09) can also be employed to
obtain asymptotic series for 'ro(q) for -150° < arg q < 30° ir
we write

> 11
'Co(q) 22 [q + - - 4 ooo] + 12q
2 q
where further terms in the expansion can be obtained from Eqs.
(2=25a) and (2-25b) where now the values of q are complex.

Zexp| = % @ =1 = ees] (2426)

In Fige =3 wo have indicated the regions in which one can employ
the representations for 'cs(q) which we have given in Eqs. (2-21),
(2=-22) and (2=-26). The boundary for Eqe (2=26) has been drawn
with dashed lines because this is an asymptctic representation
and the expausion does not possess an exact boundary outside of
which it can be employede It is important to observe that there )

2=3)
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0 a5 1.0 1.5 20 25 30 35 4.0
Rexl +

Fige 2=3 Boundaries for Regions of Applicabllity of
Eqse (2=21), (2-22) and (2=26)
are root loci (Somputed on the basis of Eqe. (2=21)) which start
from q = 0 at t_, and which cannot be "joined" to the root loci
vcomputed on the basis of Eqe (2=22)) which start from q = » at

T:. Since the expansions given by Egs. (2=21) and (2=22) be-
come useless (from a practical point of view) before the theoreti=-

cal boundaries are reached, there are considerable "gaps" in the
complex q-plane which cannot be reached by employing these clas-
sical expansions.

2=35
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2¢3 The Root Locus for the Ground Wave Problem

Before we continue with the discussion of methods for the numeri-
cal evaluation of the roots Ts(q), let us consider in more detail
the root locus which we have referred to as the "Watson modes."
Up until about 2 decade ago the only interest in these roots was
that which arose out of the problem of predicting the diffract-
tion effects associated with the propagatlon of the ground wave
around the earth's surface. The rapidly advancing technology
associated with the development of missiles and satellites has
opened up a broad new range of problems in which the microwave
engineer requires the abllity to predict the diffraction effects
when radiowaves are radiated from (or received by) an antenna
mounted upon a convex surface. Another broad new area of inter-
est 1s that associated with the radar reflection characteristics
of bodies whose shape includes include portions that come within

the scope of the problem of reflection from and diffraction around
convex surfaces.s The development of the laser has provided physi-

cists with a source of coherent electromagnetic waves and now
(Refs 20) there exists an interest in this diffraction theory
even in the range of the optical wavelengths. The recent paper
by Streifer and Kodis (Ref. 21) is probably only the precusor of
the flood of papers which will gppear within the next decade in
which the logarithmic derivative of the Airy funciion willl play
a prominent role.

From the rotational property of the Airy functions, we know that

*(¢ .
ae) =0 s Tltem(ifn))
wy (t) v(texp(i§n)]

= exp(1gn) Al Ltexp(ifn)] (2-27)
Al[texp(ifn))

Therefore, by rotating the contour plot given in Fig. 2=2 and

2=36
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by relabeling the lines of constant phase, we obtain the contour

plot of the logarithmic derivative L(t) = A1’ (t)/A1(t) which is
given in Fig. 2-4.

Let us consider briefly a problem in which both the logarithmic
derivative q(t) = w;”(t)/wy (t) and the logarithmic derivative
L(t) = v*(t)/v(t) occur. In the study of diffraction by circular

cylinders we have to solve the two dimensional differential equ-
ation

2 2
[9—2 + 12 32-9-2 + ké] ¥(py0) =0 (2-28)
% pop p 99

Let the electrical properties of the cylinder be characterized by
k, while that of the outside is described by k. The cylinder has
a radius a. We will use an exp(-iwt) time dependence. Since the
wave must be outgoing at infinity and finite at p = 0, we choose

-3.8 -3.0 -28 -2.0 -l.8 -1.0 -0.3 o 0.9 1.0
REAL ¢
Fige 2=l The Logarithmic Derivative L(t) = A1’ (t)/Ai(t)
( phase g = ———— modulus)
2=37
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a solution proportional to

exp (+ivp) Hél)(kp) y p > 8

exp(+ive) J (kyp) » p<a
where
] k2 = wch‘ ’ p > 8 (2"29&)
| 2a_ 2
kl =W clp'l + 1@“10’1 s P < 8 (2"'29b)

) In electromagnetic diffraction problems which involve a circular
5 cylinder, there are generally two cases of Interest:

(a) ¥ = Ez s 0lectric fleld parallel to the axls cI the cylinder

(b) v = H, , magnetic fileld parallel to the axis of the cylinder

The continuity requirements on the electric and magnetic field at
the interface p = a lead to an elgenvalue problem for the deter-
mination of the roots Vg defirad by

1), , 1 =
b [Jvlk JUs(kla)H\Es) (ka) - p.liUS (kla)H‘gs) (ka) =0 s ¥ = EZ (2'30&)
{ (1). , (1) = =
| by Jus(kla)HUs) (ka) = ulkJUS(kla)Hus (ka) =0, ¢ = H, (2=30D)

v

If the magnitude of k; is much greater than that of k, we can
show that the magnitude of kja is much greater than the magnitude
of vy (for small values of s if we order the vg and let vy be the
root with the smallest imaginary part, Vo be the root with the

i next smallest imaginary part, etc.) and then we can use the ap=
proximation

J; (k,a)

Jbéﬁia)

= 1 Vg a)? = 02 /(ky8) (2-31)

2=38
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Therefore, we find that we have to solve the problem defined by

Héz)’(ka) [ -i(ukl/blk)v«kia)z = ug /(k8) , ¥ = E, (2=32a)

H‘f:) (ka) ~1 (g 1 /iy 1 (1ey 2) € = U§ /Gga), ¥ = Hy (2-320)

When ka 1s very large, there are roots Vg which are in the vicin=-
ity of g S kae Therefore, we can use the Lorenz=Nicholson asymp=

totic approximation

Y (xa) ~ - (AR (a/2) Buy (1) (2=33)
where w; (t) is the Airy function and t is defined by
o = Xa + (ka/2)3t (2=31)

Therefore, we can employ the approximation

(1),
H (xa) ,
Vi -4 M1 (t)
11
HUg)(ka) wl(t)

to obtain the followlng problem which is to be solved for the
roots ts

t = (ka/2) ¥ (y_ - ke) (2-36)
defined by
( B
uky [ (k,28)° -
11{¥/ 1? \ 8 ,w=E  (2-37Ta)
’ 4 k. al
wy(t,) . i(ka/a)%{ 1 1
¥y (bl bk V (ky8)° = b7
=H,  (2=370)
\ l*kl (kla)

If we make the further approximation of replacing Vg by (ka) in
the radicals of kqe (2-37) we can express the eigenvalue problem
in the form

2=39
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alty) =

s) Ay y ¥ 5 Ez

Wl(ts) )

Wl' (t

9, s ¥ =H

where the impedance parameters are

i(ka/Z)%(k/kl)\A C (1:/1:1)2
i(ka/a)%‘(kl/k)\[ - (k/kl? 2 (ltl/k)‘?qv

Uy

q,

(2=38a)

(2=38b)

(2=39a)

(2-391v)

Although we have derived Eq. (2=38) for the case of a circular
cylinder, the analysis for the lossy dielectric sphere leads to
equation in the limit as ka + ». If the diffracting
obstacle is lossless, we observe that

an identical

arg(q,) = arg(q,) = 90°

However, if gy >> Weq, We find that

15°
135°

arg(q,)

arg(q,)

Therefore, we observe that

45° < arg(q,) < 90°
90° < arg(q,) < 135°

Most of the pspers published to date have dealt with the eigen-

value problem defined by Eqe (2=38).

This approximation is gen-

erally adequate for the problem of studying the Propagation of the

ground wave around the earth!s surface.
which arise in the applications of microwaves, the condition

However, in problems

that kia be much larger than ka is not satisfled in many of the
situations for which data on the propagation phenomena is desired.

Let us sketch a method which can be employed under much less

stringent conditions than those which must be satisfled in order
to have the problem reduce to Eqe (2=38).

2=440
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We need an asymptotic approximation for the Bessel functions
which is valld when both ka and k,a are large, but the relation

| k,a] >> | ka| need not hold. A suitable asymptotic estimate 1ls
that which was employed in the mid=1930!s by Langer and which has
bcen employed in the more rocent studies made by Olver (Ref. 22).
In order to simplify the asymptotic formulae, let us make a few
definitions. Let 2 = %(z) be defined by

% ;3/2 = log[(1 + v& - zz)/z] - V& -z (2=40a)

and then define

8(z) = [hz/( - z2)1*/b (2-L,0b)

¥(z) = 2/[z8(2)) (2=1,0¢c)

The Langer-Olver asymptotic estimates are then given by

vE ) (oz) = 18 (1) 078w (o) (2-14)
VE B (02) = 1v(2)07Rug (o¥y) (2=L2)
VI J,(vz) = q:(g)u"% V(\J%?;) (2=43)
VE 3% (v2) = ~¥ (x)o"8v* (oFy) (2=141y)

In order to use Eqs. (2=,1) through (2-4;) in Eq. (2=30), we de-
fine the quantities z and z, and 4 and ¥4 by means of tine rela-
tions

Z =ka/us 9 Zl =k1a/us

z = g(z) ’ Zg = ¢(z)
and then observe that the logarithmic derivatives of the Bessel
functions which occur in Eg. (2-30) can be expressed in the form

2=ly1
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(1),
H (ka) . F )
i (ka) 2v (U/ka)V4 (ka/v)</(4z)] ;;7;32) (2=45)

~ =28 - 2/, .
7 eyl 2v (u/kla)\/li (ky8/v) /(Ml)]v_(u!z.;l_) (2-446)

The subscript s on v, has been suppressed in writing Eqgs. (2=45)
and (2=46), We can then replace Eqe (2=30a) by the asymptotic
approximation

wl'(uél) _ V'(u§ Z) |1 & ug = (kla)2 3 (247)
wl(u%g) V(ug %) L4y u§ - (ka)2
where
bl
™Y

We can replace Eqe (2-30b) by a similar equation in which the only
difference is that I' is replaced by ri,

Eqe (2=47) provides an example of the direction in which future
work will undoubtedly be directeds In Eqe (2-38) the right hand
side 1s a constant, whereas in Eq. (2=47) we not only have a right
hand side which is variable, but it has the interesting property
of involving the logarithmic derivative of the Airy function v(t).
In some situations we may expect to find roots for which Vg = k8
and k,a and ka ere widely enough separated that we can use an.:
asymptotic estimate for the left hand side of Eqe (2=47) and then
find that the problem to be solve 1s

vl g)  MCF g)
s 510

v(v® ?;1) Ai(U§ &1)
2=} 2

= F(us,kla,ka,l") (2-48)
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where F(us,kla,ka,r) may 1in some problems be so slowly varying
that we can consider it to be a constant and therefore 1ind that
the problem to be solved is

v'(t) -Fv(t) =0 (2=49a)
which is equivalent to
wi[texp(i%m)] - Fexp(-i%m) wl[texp(i%m)] =0 (2=49b)

We want now to turn away from this more general probiem and look
more closely at the classical ground wave propagation problem.
However, we hope that the rcader sees from the discourse above
that there exists many more reasons to study the roots of

W (1) =qwit) =0
than merely the fact that this equation plays a fundamental role

in the problem of propagation of radio waves around the earth's

surface.

The calculations made by van der Pol and Bremmer (Ref. 6), Norton
(Refs 13), Wyngaarden and van der Pol (Ref. 9), and Johler, et.
ale (Refe 15) have all been made for specific frequencies and
electrical properties of the earth. Such calculations play an
important role in specific engineering applications. However,
from the point of view of making calculations which can be adapt-
ed by the potential user to a class of problems, there are advan=-
tages to be had by following the procedurcs which were employed
by Domb  (Refe 19) and Belkina (Ref. 17).

*Although the reference is to a paper by Domb, the author would
like to remind the rcader that this work was primarily under the
technical direction of M. He Le Pryces The calculations were made
in 1942-l by the Admiralty Computing Service and the contributors
included Je Ce Pe Miller, Le Fox, D H. Sadler, Re He Corkan, P.
He Haines, R Go Taylor, and E, M, Wilson,

2=43
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In the tables of Ref. 19, it is assumed that the impedance para-

meter q 1s of the form
q = Qexp(115°)

where Q 1s real and positives Calculations were made for the

first five roots for

Q = 0.0(0e1)140 , and % = 000(0s1)1e0

In Table 2=5 we list the values that were obtained for the first
root 73 (q) by Domb and his co-workers. The "tic" marks that ap-
pear on the locus for hSo (the "Watson modes") correspond to the

entries in Table 2«6,

The present author feels that there 1s a definite advantage in
the presenting of the results in terms of dimensionless parame-
ters in the manner smployed by Pryce and Domb (Ref. 25), Pryce
(Refs 2ly) and Domb (Ref. 19)e In order to emphasize this point,
we present in Table 2=7 the values for the root Tl(q) which were

obtained by Johler, Walters and Lilley for the case of propagation

over typical land (eq = 15, 04 = 0s005 mho/m) and over typlcal
sea (e1 = 80, 01 5 mho/m) for frequencies between 0 and 2000 kce.

Table 2-6
THE ROOT 71 AS CALCULATED BY ADMIRALTY COMPUTING SERVICE

Q Real 1y Imag T4 1/ Real 7, Imag Ty
0e0 04509 0,882 0s0 1,169 20025
O0el 0,60 0,862 0el 14240 1.<8;53
0e2 0469 0.850 0.2 1,311 1.877
0e3 0790 0.8,8 0e3 1,383 1.780
Oeli 04880 0.853 O  1e4i49 1,685
Oe5  0.967 0486 0e5 14497 1,559
06 t.OSO 0.891 0.6 1.510 1.)_‘_20
O/ 1,128 0.921 Oe'f 1.14.86 1.223
0.8 1,201 0.958 0e8 14439 1,189
0.9 1,26 1,002 0.9 103 3 1,110
1.0 1,326 1,051 1,0 1,326 1,051
2=l
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Table 2=7
TABLE OF ROOTS Tl(q) OBTAINED BY JOHLER, WALTERS AND LILLEY

€q = 15 €q = 80
Frequency
(k) g = 04005 mho/m g = 5 mho/m
Real 1, Imag Ty Real T, Imag T4
0 0.509L 0.8823 0.509L 0,8323
0.1 0.5115  0.8811 0.5095 0.8823
0.2 0.5131  0.8813 0.5095 0.8823
0.5 0.5173  0.8802 0.,5096 0.8822
1.0 0.5235  0,8786 0,5098 0,8822
2 0.5346 0.8759 0.510?2 0.8821
3 0.5uLlL7 0.8735 0.5105 0.8820
L 0.5542 0.871L 0.5108 0.8819
5 0.563L 0.869) 0.5111 0.8818
6 0.5722 0.8676 0.511Y4 0.8818
T 0.5808 0.8659 0.5117 0,8817
8 0.5892 0.86L43 0.5119 0.8816
9 0.597L 0.8628 0.5122 0.8816
10 0.6055 0.861L 0,512 0.8815
20 0.6801 0.8519 0.5148 0.8809
30 0.7477 0.8483 0.5170 0.8803
50 0,8696 0.8542 0.5210 0.8793
60 0.9254 0.8625 0,5229 0.8788
70 0.9782 0.8739 0.52448 0.8783
80 1.0281 0.8879 0.5266 0.8778
90 1.0753 0.90L45 0.528L 0.8774
100 1.1197 0.9233 0.5301 0.8770
200 1.4111 1,19L) 045463 0.8731
300 1.L628 1.4552 0,5612 0.8698
400 1.L573  1.6096 0.5752 0.8669
500 14173 1.6992 0.5886 0.86LL
600 1.3835  1,7538 0.6016 0.8620
700 1. 3569 1,7906 0,612 0.8600
800 1.3361 1.8171 0.6264 0.8581
900 1.3193  1.8373 0.638L 0.856L
1000 1, 3055 1,8531 0.6502 0.8549
1100 1. 2940 1.8660 0,6618 0.8536
1200 1,2843 1,8766 0,6732 0.8524
1300 1,2759 1.8856 0.68L3 0.8513
1400 1.2687 1.8933 0.695) 0.8504
1500 1.2623 1.8999 0.,7062 0.8L97
1600 1.2566 1.9057 0.7170 0.8490
1700 1.2516 1,9108 0.7276 0.8485
1800 0.2471 1.915L 0.7380 0.8L81
1900 1.2430 1.9195 0.7L8L 0.8479
2000 1.2393 1,9232 0.7586 0.8L77
2=15
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T0089
2 = 0.5094 + 10.8823

+0.85

0050 0e52 0e54 0656 0.58 060 062

--008 2;.6 e + -

5 Q = 0.2 S Jo.0 Me/s

0.63 0.65 067 0.69 o.M 0.73 0.75

T //lﬁr:ﬁ;
\_Q = ul3 . - ) Q= u'g
0.76 0478 0.80 0.82 0. 84 0.86 0.58

Fige 2=5 The Root Locus of ¢1[Qexp(iu5°)] for 0 < Q < O

In Fige 2=5 we have presented (in strip form) a greatly magnified
version of the root locus for arg(q) = 45° which has been illus=
trated in Figse 2=1 and 2-2. Over this range it is not possible
to distinguish between this locus and the locus of points which
are obtained from the tables of Ref, 15% for f‘-equencies up to

"Refs 15 can be used to extend Table 2=6 to 10,000 kc.

2=L6
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50 kc over "typical land" and up to 3000 kc over "typical seas."
The portion of the locus which is given in this figure is an in-
teresting region because 1t contains the "minimum" in the imagi-
nary part of xl[Qexp(iMEO)] which occurs between Q = 025 and
0e30. This occurs for a frequency of the order of 30 kc over
"typical land" and of the order of 2000 kc over "typical sea."

The data given in Ref. 15 reveals that when the frequency is
10,000 ke that the corresponding wvalue of Q is of the order of
unity in the case of "typical sea." If one plots the data of
Table 2=6 for the case of "typical land" on a scale such as em-
ployed in Fig. 2=5, it will be observed that as the frequency
continues to increase that the locus pulls slightly away from
the locus for arg(q) = 45°. The reader who is interested in the
relation of the impedance parameter to the frequency will find
tables in Ref. 15 for quantities denoted by K, and y_. The rela-
tion to q is

= 1 p1s
", P el

In Fige 2=6 we have plotted several sets of data which are related

to the behavior of the root locus for high frequencies when Tl(q)
approaches T? = 1,169 + 12,025 as the magnitude of q tends to in-

finity. The lowest set of points (labeled NBS DATA) is taken from

Refs 15 for the case of "typical land." The highest frequency
considered was 10 Mce The highest set of data in this figure is
the root locus for arg(q) = 45°. Over the range covered by this
illustration these two loci are virtually parallel. The reader
will observe that the megnitude of q on the locus based on the
data of Ref. 15 is of the order of 10 at a frequency of 3 Mc.

The CeCeIleRe atlas of ground wave curves which was prepared by
Wyngaarden and van der Pol does not overlap with the data of
Ref. 15 since the frequency range is taken to be that from 30 Mc
to 300 Mce Furthermore, the electrical parameters are not the

2=7
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Fige 2=6 Locl of Roots in Vicinity of 'tT = 1,169 + 12,025 for
Propagation Around the Earth's Surface

2=;8
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same in the two sets of calculations. The parameters employed

were as indicated below.

Johler, Walters Wyngaarden and
Source and Lilley van der Pol
Ref. 15 Ref. 9
“Typieal Band! gy = 0,005 mho/m | o, = 0,001 mho/m
= 8 = 80
"Pypical Sea" °1 0 "1
oy = 5 mho/m oy = 4 mho/m

The curve for "typical sea'" in Fige, 2-6 is virtually parallel over
to the curve for arg(q) = 45°. The frequency has not been taken
to be large enough for us to see how the locus of the roots for
propagation over the "typical sea" approaches the limiting point
at TT. However, the curve for "typical land" in the CeCeIeRe
atlas do show the manner in which that locus turns and heads into
the limiting point along the locus for arg(q) = 90°. The atlas
prepared by the Radio Research Laboratory (Ref. 23) covers the
frequency range from 30 to 10,000 Mc , but the roots which were
employed to make the calculations have not been listed in the
report,

Except for the "tic" mark which is used to mark the location of
the root for q = O.lexp(iASO), all the "tic" marks on the locus
for arg(q) = 45° are taken from the data published by Belkina
(refe 17)e The method employed by Bolkina deserves further study
because 1t is perhaps the most useful method of presenting data
which has been developed to date. In Eq. (2-39) we have given
expressions for the impedance parameters for vertical and hori-
zontal polarization. They depend upon a, ®, €19 Hqs and ogqe In
the ground wave problem the radius a is fixed (although it also

2=149
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varies if we talke into account the fact that the concept of an

equivalent earth's radius 1s employed to take into account the
rate of change of the index of refraction zt the earth's surfaces)
but we still have the three variables w, eqy and o4 even in those
cases for which py = 1, Following a suggestion make by Fock,
Belkina used tihe approximation

\A - (k/k1)2 e
VI o+ (k/kp)2

1 «

which is valid when thc magnitude of (k/kl) is small, Belkina
then observed the manner in which the frcquency w enters the ex-
pression for q_ of Eqe (2=39a) and assumed that q, could be re-
presentcd by an expression of the form

5/6 .
q = —-—-—:]'n (2"50)

VI + an
thls expression has the advantage of containing only two para-
meters and therefore i1t is possible to conceive of making computa-
tions for a range of values of a and n which will serve to cover
a range of values of w, €19 and o4 . This is a very clever
transformation since we have two adjustable parameters at our
disposal in Eq. (2-50) and the physical problcm consists of two
basic varlablea, the wavelength and the physical nature of the
earth's crust over which thc wave 1s being propagateds The fact
that the properties of the earth's crust requires two real para=-
meters, eq and gqyfor its description forces us to consider the
diffraction phenomena to depend upon at least three varlables
(threc only if we assume e to be constant and equal to the value
of i in free space)es The advantage of the form for q glven in
Eqs (2=50) is that we have only 2 parameters to vary and hence it x
becomes feasible to attempt to compute some universal data which
can be used in a variety of physical problems. In Table 2=8a we
have reproduced Belkina's table which shows the combination of

250 } |
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Table 2=8a

TABLE OF VALUEZS OF THE PARAMETER log n SHOWILG DEPuNDeNCo UPON
PHYSICAL NATURE OF THZ SOIL OR StA AND ON THs WAVELENGTH A

Physical |Very Slight<4Slight= |Marsh |Damp Damp
Nature Salty ly 1y Soil Soil
of Sea Salty |Salty and and
Soil Water Sea Sea Meadow |Meadow
Water |Water Soil Soil
. 80 80 80 15 5 | 1
% 2,108 1,108 2.108 1.107 1 | 210
a 0,010 0,018 0,024 0,010 0,023 l 0,031
A
(meters teg
10 0,425 | 0,844 1,021 ¢+ 1,44 2,04 2,22
20 0,124 | 0,543 0,720 @ 1,143 1,744 1,924
30 —-0,052 @ 0,367 0,544 0,967 1,568 | 1,748
40 —0,177 | 0,242 0,419 0,842 1,443 1 1,623
50 —0,274 0,145 0,322 0,745 1,346 1,526
60 —0,353 0,065 0,243 0,666 1,267 1,447
70 --0,420 ; —0,001 0,176 0,599 1,200 1,380
80 —0,478 | —0,059 0,118 0,541 1,142 1,322
90 —0,520 -0,110 0,067 0,490 1,091 1,271
100 - 0,575 —0,156 0,021 0,444 1,045 1,225
200 —0,876 —0,457 | —0,280 0,143 0,744 0,924
300 --1,0562 -0,633 | —0,456 | —0,033 0,568 0,748
400 —1,177 -0,758 | —0,581 —0,158 0,443 0,623
500 —1,274 -0,855 | —0,678 | —0,255 0,346 0,526
600 -1,353 -0,934 | —0,757 | —,334 0,267 0.447
700 --1,420 —1,001 —0,824 | —0,401 0,200 0,380
800 —1,478 —1,009 | —0,882 | —0,459 0,142 0,322
900 ---1,629 -1,110 | —0,933 | —0,510 0,091 0,271
1000 —1,575 —-1,166 | —0,979 | —0,556 0,045 0,225
1100 -1,616 —1,198 | —1,020 | —0,597 0,004 0,184
1200 —1,654 -1,235 | —1,058 | —G,635 | —0,034 0,146
1300 --1,689 -1,270 | —1,093 | —0,670 | —0,069 0,111
1400 —1,721 -1,302 | —1,125 | —0,702 | —0,101 0,079
1500 -—1,751 -1,332 | —1,1585 | —0,732 | -0,131 0,049
1600 — 1779 —1,360 | —1,183 j} —0,760 | -0,159 0,021
1700 —1,806 —1,386 | —1,209 | —0,786 | —0,185 | —0,005
1800 -1,830 -1,411 | —1,234 | —0,811 | —0,210 | —0,030
1900 --1,854 —-1,435 | —1,258 | —0,835 | —0,234¢ —0,054
2000 —1,876 | —1,457 | —1,280 | —0,857 | —0,256 | —0,076

Note:Belkina expressed the conductivity of the earth in the form
o] /o where ¢ is the conductivity of the earth and ¢ islthe con=
dlctivity of mercury which was taken to be 1oho (R%em]™ .

2=51
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Table 2=8b

2=52

§
MO ln‘
THE FUNCTION gq(a,n) =
;/ {+an
1gn a=00) _ s = 0,01
Reg = Img Reg img
-1,0 0,1037891 0,1037371 0,1038409
-0,9 0,1257434 ,1256642 0,1258225
—0,8 0,1523415 0,1522206 0,1524621
—0,7 0,1845660 0,1843816 0,1847498
-0,6 0,223607 0,223325 0,223887
—0,5 0.270906 0,270476 0,271333
—0,4 0,328210 0,327555 0,328861
-0,3 0,397635 0,396635 0,398628
—0,2" 0,481746 0,480219 0,483259
—0,1 0,583649 0,581317. 0,585953
0 C 707107 0,703545 0,710616
0,1 0,856679 0,851236 _0,862020
0,2 1,037891 1,029569 1,046016
0,3 1,257434 1,244705 1,269788
0,4 1,523415 1,503929 1,542180
0,5 1,845660 1,815804 ° 1,874132
0,6 2,23607 2,19027 2,27921
0,7 2,70906 2,63873 2,77429
0,8 3,28210 3,17393 3,38050
0,9 3,97635 *3,80968 4,12430
1,0 © 4,81746 4,56015 5,03891
1,1 5,83649 5,43841 6,16599
1,2 7,07107 6,45394 7,55738
1,3 . 8,56679 . 7,60847 9,27653
1,4 10,37891 8,88952 11,39862
1,5 12,57434 10,26164 14,00751
16 15,23415 11,65625 17,18642
1,7 18,45660 12,9648 20,9998
1,8 22,3607 14,0434 25,4659
1,9 27,0906 14,7388 30,5303
2,0 32,8210 14,9365 36,0599
2,1 39,7635 14,6074 41,8749
2,2 48,1746 13,8223 47,8098
2,3 58,3649 12,7195 53,7664
2,4 70,7107 11,4522 59,7293
2,5 85,6679 10,1478 65,7465
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Table 2=8b (Cont 1d)

5

lnr
THE FUNCTION q(a,n) = e
\ a = 0,02 a=0,03
Ign Reg | Imgq Reg | Imgq
-1,0 0,1036851 0,1038927 0,1036330 0,1039444
-0,9 0,1255848 0,1259014 0,1255018 0,1259836
-0,8 0,1520995 0,1525824 0,1519780 0,1527024
-0,7 0,1841967 0,1849331 0,1840111 0,1851159
-0,6 0,223043 0,224166 0,222760 0,224444
-0,5 0,270045 0,271758 0,269612 , 0,272182
-0,4 0.326896 0,329509 0,326232 0,330152
-0,3 0,395628 0,399613 0,394613 0,400591
-0,2 0,478678 0,484757 0,477123 0,486240
-0,1 0,578958 0,588229 0,576573 0,590476
0 0,699931 0,714070 0,696268 0,717469
0,1 0,845695 0,867256 0,840058 0,872384
0,2 1,021061 1,053939 1,012373 1,061652
0,3 1,231620 1,281748 1,218199 1,293298
0,4 1,483770 1,560182 1,462987 1,577381
0,5 1,78468¢ 1,901119 1,752413 1,926529
0,6 2,14211 2,31944 2,09188 2,35658
0,7 2,56400 2,83385 2,48563 2,88730
0,8 3,05767 3,46777 2,93526 3,54298
0,9 3,62843 4,25036 3,43735 4,35271
1,0 4,27717 5,21731 3,98016 5,34946
1,1 4,99680 6,41087 4,53962 6,56711
1,2 5,76723 7,87812 5,07600 8,03403
1,3 6,54979 9,66574 5,53436 9,76282
1,4 7,28329 11,80968 5,85280 11,73901
1,5 7,88683 14,31989 5,98001 13,91601
1,6 8,27453 17,16533 5,89537 16,22415
1,7 8,3824 20,2709 5,61860 18,59365
1,8 8,1948 23,5356 5,2007 20,9779
1,9 7,7519 26,8668 4,7034 23,3633
2,0 7,1316 30,2098 4,1810 25,7645
2,1 6,4198 33,5565 3,6717 28,2121
2,2 5,6878 36,9341 3,1979 30,7423
2,3 4,9835 40,3885 2,7700 33,3909
2,4 4,3338 43,9710 2,3908 36,1908
2,5 3,7502 47,7310 2,0588 39,1718
2=53
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@ and n which are required to describe the varicbles €1 Op and

A which enter into certain diffraction problems. In Table 2=8b
we reproduce the table given by Belkina which prescnts the values
of g which result from use of the combinatlions of a and n which
are contained in the tables. The readcr will observe that nega-
tive values of log n (ies@ey, n < 1) lead to combinations of the
real and imaginary parts of q which are almost eaual and there-
fore the argument of q is of the order of 1.5° However, for
large positive values of n (and a > 0), we see that the imaginary
part of q grows much faster than does the real parte Therefore,
these data recveal that the family of root locl which are based
upon Eqe (2=50) will parallel the locus arg(q) = 45° for small
values of n, but then will pull away from this locus and turn to
approach TT along a line which is parallel to the imaginary axis.

Diffraction theory necds the ingenuity and inventiveness u:hich
leads to the recognition of the importance of models such as that
contained in Eqe. (2-50). Since the electrical properties to be
assigned to an obstacle are often not known exactly, it would De

a great cdvantagc to have the calculations which are published
have their basis in a relationship similar to that of Eqe. (2=50)
which will permit the construction of a family of universal curves
which can be relatively easily adapted to a wide varicty of ap-
proximate physical modelse

The importance of sceking universal curves 1s clearly indicated

by the CeCeleR. atlas (Refe. 9)s It is not possible to plot the
roots for horizontal polarization on the graph given in Fig. 2-5
because they are all closely clustered around xT. This suggests
that the approximations suggested in Appendix E (see Ege (E=T)

and (E=-8)) could be used to obtain the data for horizontal polari-
zation from the universal functions computcd for g = o The iIm=
portance of these concepts was apparcntly apcreciated by Pryce

and Domb (Ref. 25), but later writers have apparcntly not been

2=5L
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influenced by this relatively unknown work which was carried out
in England during World War IIl,

The papers of Norton (Ref. 13) and Pryce and Domb (Ref. 25) are
seldom referred to by recent writers. However, these papers are
a "must" on the reading lists of those who undertake numerical
work in diffraction theory. These men were not writing a paper
just to add another paper to their list of publications; they
were writing to try to guide engineers towards the obtaining of
numerical results for the practical problems that they might

encountere.

Our discussion of the root loci for the ground wave propagation
problems have led us away from our development of numerical
methods for solving for the roots and associated functions. How=-
ever, we are entering an era in which we can expect an increase
of interest in diffraction phenomena. Even if scores of atlascs
are prepared which will illustrate tie diffraction phenomena
associated with dielectric spheres and circular cylinders, the
chances are quite large that the engineer who wants an answer will
nave difficulty in Iinterpolating when the exisiting data have been
obtained for a set of values of the electrical parametors, the
radius a, and the wavelcn;the Even with the ability to employ
the electronic computcr to make calculations, it is still worth
keeping in mind that if one can find a means of computing a
"universal' function that one might not neecd to get back on the
computer to make a completcly new computation when one 1s faced
with tho problem of changing the parameters of the problem.

In Appendlx C we have given some coefficlents which will enable
the user to calculate (on a desk calculator) the roots for arg(q)
in the vicinity of MSO and for arg(q) in the vicinity of 0°, These
two cases appeer to be the ones in which there is the most in-
torcst at presente.

2=55
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2ely Numerical Values for the Classical Expansions

The expansions which are designated as Eqe. (2=21) and Eq. (2=22)

have been employed in the papers of many writers since the first

several terms were given in the classic papers of van der Pol and
Bremmer (Ref. 6). Norton (Ref. 13) gave the first sevsral terms

with numerical values for thc coefficients. Howe (Refs 1) dis-

cussed the obtaining of numerical values of A and Bn on an elec-
tronic computer. Johler, Walters, and Lilley (Ref. 15) have given
(in a slightly different notation) the explicit dependence of the
coofficicnts upon Tt for terms up to and including Alo(r) and

By 4 (7).

If one wants specific numerical values for the An(T) and Bn(T),
the use of the expliclt forms for these coefficients as a func-
tion of T is to be discouraged since the coefficients (as has been
shown by Howe(Ref. 1l}) and by a group at Leningrad University
(Refe 16)) can be readily obtained by means of recursion formulae.
For n » 2, the recursion formula for the A, 1s

nAA, = =[(n=1)AA, 4 + (n=2)(A; = 1)A , + (n=3)AjA .

+ oe00 + ZAn_aAZ + An-lA].]

n=1

(n=2)A _, -Z mA Ao - (2=51)

m=1

where A, = B exp(ign) and AjAj =1, For n > 3, the recursion for-
mula for the Bn is

nﬁn = BB

ne3 + 2B2Bn"l.|. L XX (n-2 ) Bn-2B1 +- \n-l )Bn-lBo

N2

= Z mBB . o (2-52)
m=1

2=56
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where B, = asexp(ikﬂ), By =1 and B2 = O

Since the An(m) and Bn(m) are complex quantities, the calculations
based upon Egqse (2-51) and (2=52) are somewhat more involved than

one might suspect. However, one can readily see that each of
these quantities must be of the form of a real number times the
factor exp(igmm), where m is an integers. This is quite obvious
since each of the explicit forms is representablec as an integral
power of 1 multiplied times a polynomial in z = 13 in which the
coefficients are real. Since ¢ = asexp(i%n) or T = Bsexp(i%n),
13 = -ag or ¢3 = -Bg, and hence the polynomial is real. If one
"plays around" with the explieit forms for a while, it becomes
clear that a suitable set of real coefficients can be defined

by means of the relatlons

Cn(ﬁ) An(’t) exp(-iﬁ-ﬂ)exp(i—%mt) s T ﬁexp(i-g.'n) (2-53)

Dn(a) Bn(T)exp(-i%m)exp(-L%nn) » T = aexp(iin) (2=51)

Eqs. (2=21) and (2-22) then take the forms

tg(a) = [ By +:E: C,, (Bg)q"exp(~15nm) Jexp (13n) (2=55)
n=1

T (a) = [ o +§ D, {ay)q exp (1§nm) Jexp (14m) (2-56)
&

The expressions in the brackets [es.] becomes purely real when
q = Qexp(i%n) or q = Qexp(=-iin), where Q is real and positive.
In this case the roots Ts(q) lies along the ray arg(t) = 3n and
we observe that this 1s illustrated by the root locl depicted in

Fige 2-2¢ In Table 2-9 we present values for the coefficients Cn

for use In Eqe (2=55) for s = 1(1)5, Similar tables of the

coefficients D, for use in Eq. (2-56) are given in Table 2-10.
(Text continues on p. 2=6l)

2=57
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COEFFICIENTS IN THz EXPANSION OF Ts(q) IN SERIES OF POWERS OF g

NN\ WO

Cn
0.17187927916L747108902E
0.9815536193L5656133L97E

-0.47283779525397L03L10LE
13140521531 3929417 296E
-.716229388859209587269E
-.9877428212063769602L7E
.20128847168LL997L7356E
.13462118035026 36378 29E
-.566681835171367906905E
-.191945L8L867659312395E
1555711574 35L53L98596E
.189166890896791L 311 38E
-.1408702510997938817908E
. 21417908L42855597 39L022E
.1005L04121693377L37802E
-.2L60LL270L0 31581341821
-.22325772962695294 38 29E
+108L57L0096L01966706 TE
« 10970966681,501685698 3F.
- 380091L16L7L586776771F
-.112322222520,222 35957 75E
.1161751741571700L8886E
-.104L918046361155007696F
- 31182030296256368517
«92152961606875395L9 3LE
.737928L67701561020502F,
-.1118423398118797694258E
-.13L774620393338729LLOE
.15121611057,587815081E
. 987063651581 3198L0166F
-.1472963152703912022557F,
.6572528323318507L5L6TE
.1294,3890327127 3956629F,
-. 1461 3,2576725111,6689 3F,
-.299L1065860L 3875279L6F
.2011482355216207 38 342F.
«50372341365009438 3461F
-+ 719688066091L023L 3187E
-.739409839168562907067E
«2229111096L115985238 3F.
-.1434500398394768561 335E

Table 2=9

g =1
n
Lo
In
L2

258

Cn
-.1134503398 394768561 335E
-0,5993658 372003519722L6F.
2577626000261, 3L,35788LF
.1327798363801986 3636 3E
-.107L14291 38 36100L65795E
-.19142228801 39782 35006
. 3754390791 3168762659, 5%
-.17666L3718334117 31018,
-.113371076L457035958E1LE
«29013721.0005LL1L85875R
.2951948528,101 32 36586E
-.1523011534 2661493130708
-.611338778961273750177E
.6061519339)9889276592F
.6650639510809,,9487951E
-.20495253271518981 32388
.216786870500981051550K8
.60237154078L8L58 3664 7E
-.19511946278L6379L 3738k
-.15019459909 32,02 3156 2F.
.928L55715668,97 3L5781F
.282U1:52308929290762 26
-.35367%3L9L1, 79505029718
-.1580360576573211021670F.
1157 3629847955301, 1LOE
-.1918176655671900565261
-.328336429L3736L579183E
12985141 29913717537579F.
774864187146 317811008
-.57661810893608L78L245E
-.126511775667423999569E
.2107L3L9L62955793L185FE
-. 376L11689026168 27 3L860K
-.666167492773L0296 36Li2F,
151877114266 2097781LLFE
1811, 31817295651 22691 5F,
-.8676547131 663L4096336E
-+ 39951899L693012515689%
. 36222565456751 3220069E
.51994,7252851816508885%
-.1272320L976377 352L608F,

LOCKHEED MISSILES & SPACE COMPANY
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a1p
-12
-12
=12
-12
=13
=13
-1l
-13
-1
-1l
-1l
-15
_15
=16
-15
-16
=16
=16
=15
=17
=17
=17
-18
=17
-18
=18
-18
-]_9
=19
=19
..]_9
-21
=20)
-20
-20
=21
=21
-21
-22
=21
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COEFFICIENTS IN THE EXPANSION OF Ts(q) IN SERIES OF POWERS OF g

NV oO~NoNnEwNDHO B

Table 2=9 (Cont'd)

s =2
C

n

. 32181975821.798 3653780F
. 3078630454890336088L2E
-0,14589576585143720362 E
-. 30?10L232271669809L 76E
«507636L0151679L28L515F
119635748 314817 315LL51E
-.16300168L51.5L79LL796LE
~-.8675005174:335101)9251E
19346k 30k 3117006L2769E
.1341378722039752L33% 7%,
-.141345979831LU19L0990E
-.113523648020419922238E
. 3809678530377L8295575E
-.3L1811629228917655617F
-. 951586690798 3868 3L721E
.25857311L727559952L03F
21289980524 262LL63328E
-.109777188099395559095E
-+ 39007077117699L 339800F
. 3807505L99337L09780L2E
. 3866922276058929107 35T
-.115567611967868557819E
.111545L92010122803623%
.313624352431622371733F
-.936163920L147205976821F.
-.734933451691403001706%
12037521222967669 355LE
.13L01161,996597 31137688F.
-.151552226809119708002F
-.96925889471678965L955E
.1i73391658285887 38 3021F
~.6611669271,69L86L,0618LE
-.129L85L15986 391:51,5 358E
16216299LL7595882509 39F,
2991229797227 32188682F
-. "N161293566L 33576500 3K
-.50357612789976 318 3811E
.72000L541,890996011502E
.733523576541123L96L 35E
-.22296910968651 3222),1 8F.
L316766968116899579207E

O

O O~ ONVLETwW o

2=59

£ =13
C

n
.118200992111787 35639408
.207LAL609375341 886668k

-0,LL64800615975191658 E

-, 114155016041 3200 33007F
.107033024610L 762085 3LF
.170261861 341:9615L0837E

-.201121909196 35, 7549017

-.2372L0232898045160655E
5238781050994 26860L9E
. 3L4720586L561L811,25397E

-.1108U7293206668620191F

-.509262971019762066958E
.+2293L414320034352 31 376E
.719927990245891298779r

- L6L6T75836922533221622E

-. 9268051037664 39269921E
.92185733199627 3L0209CE
«9399774L49180L6565562LF

-.17883258L017718984382E

-.226866192977L92983902F,
33834042741 9252037LLTE

-.2539878L98LL2685 36819

-.6215756940102 38 39860LE
.1043745082050047 31252E
.110103603200657041250E

-, 3232657019321 717L59)LF

-.13581610957867060172LE
. 7616754501 372109601 98E
. 2922205225779 3L860157E

-.1770275581L478299 35726F

-.L,0786806167839688L549E
.3886L386269919582222L%
.11362),7 386021 380888751E

-.81L1L27055782162970277E

-.82244987L867149L 7L170F
.163529311126658916L2LLF.

-.142868 310022 2854079858

-+ 3143L6127L891L9969692E
.59592701806L84259270LE
.5752055222222262 38022E

-.177196226505388955337E
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COEFFICIENTS IN THZ EXPANSION OF 't:s(q) IN SoRIsS OF POWERS OF g

VdZNONIIEWNDHO 3

W W AW I W W W W W N D R R N R RN NN

39
Lo

Table 2-9 (Cont'd)

s =1

Cn

6163307 3556 39L865L76LF.
.162250518657936102033E
-0,2135612360567450681 E
-.871885888108483636%0 38
.L021106198L,2825876227F,
.835169061579160738271F
-.71541171729791845 32 30F.
-.9L0L5L57760L9L75LB660E
.12325080669L11967L755E
.1135561,9 36006185256 38F
-.2079L29461 38092999231F
-.14155208314838959L0OLSE
. 3152889138080386L428785E
.178310153576453229811E
-.56571 316816925079 3020E
-.22339802378596498 3281FE
91586161 369026L,05795LE
27400365 33322792581555E
-.1465809111 264,089 365525F
-.3221567669L615657LL82E
2319548 3689655016 3320E
. 3L98761650779111 30826E
-. 362811,9290590191 3004 7E
-. 320816016 36888886667E
« 5605857L9105978553231F
«1661.7L637256L53008339F
-.85L721725041155760L28E
. 23856L61,92056084512 32F
.128L03787802000396711E
-.111124625526267); 36876F.
-.1896570557 35403621 270F
.28226292357253L17 322LF
. 274576 3601561127 7771LE
-.5988799779211708 30L55E
-. 387878L416L28699593968F,
11611220431 30160990110k
»5309 3252725658021 3881E
-.212835013734951366795E
-.69611379663304559996 3F
. 37L87086672LL77213762E
.856136183L99375L99007E

s=5
n Cn
0  .73721772550L777017709E
1 .1356L51378L7885376500F
2 -0,12479083712L6331331 E
3 -,61102401214529667 2606F
L .19695672815L579785104E
5 .L9263639556L029368712LF
6 -.293739L7879110L5I6902F
7 = L69LU1355702789LE D1 TLE
8  .L25278L2539589003L599E
9 .L628986LLL3L3T6956019E
10 -.604210743853502578962E
11 -.5172559235L493L3302118E
12 .8L68079518L5107587519E
13 5662222118307 377168268E
1L -,1174087860691555187L8E
15 -.626014512L692711725 30F
16 .161306389701628703852K
17  .692921199L71174813863E
18 -.219817072813413395125E
19 -,76187960380254039269 3F.
20  ,2972835LB575L0833L7592E
21  .8251671403662615959297
22 -,3991269701L48L.7181272E
23 -.870853477307795L989LIE
2, .531994566730915210003E
25  .88079013677591L933886E
26 -.70392025695 32885351901
27 =.827931750282L63915706E
28  .924391820918759622175E
29  .672761927061615099361F
30 -.120430L23707L0911L542E
31 -, 358559142730L92700989E
32  .155569225959 3,2660292F
33  -.19L00597516861617 3696F
3 -,19911051295600545257LE
35 .10988931615 31685599 30F
% .25224207224033L733227E
37 -.25069168 323850494892 2E
38 -, 31588092u6L9625920202E
39  L46265576L337535659503E
LO  .390343629727189369135F
2=60
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COEFFICIENTS IN THE EXPANSION OF Ts(q) IN SERIES OF POWERS OF

ugxomdomu-urowo B

D

n
0.2338107L10L459767036L9E
=0,100000000000000000000E
0.,000000000000000000000E
.7793691368199223h6163§
=« 250000000000000000000

=.109331925256937550787E
90926 399295657607052 3E
.16L7L0570689507L5LL22E
-, 264226069370932L1LLO1E
-.213710L0554605218 32L9E
.69169311275288923156E
.112297788720997886992E
-.166366387432300987771E
+6563261855L5065 316075E
36354911 38400L18415L1E
«+690160315205570526L425E
.1316150456058L 39403 31E
981 3862191476086 389L1E
-+ 39340840891 3159305757E
«+213671996252882L55892E
.10328151543698557 3212E
«.557005LL0585 39821 75LSE
-.2381019L461111:8 31.80501E
289171 311467L802657161E
.1i585120061,818597525 33E
-.1048021214890582268055E
-.5961690258655L623599LE
.317985515060398198593E
-, 3180781 27520901200706E
-.8L2338171333703320929E
.59933L11288006420111 9E
1931512821586 368590L6E
=, 201919289996 3L9905166E
=+ 35711465 311 251260901 2E
<9901 3733782927656879LE
« 37387 38LLS7 308876107 9E
=.2976067097 3080558231 9E
«797089L6LETS5LB9713151E
77615121836 3028956 Ll 3E
-.7006916 31307825915 9LOE

1l
1l
0
+0
+0

NN OV E W E N W NuNNNHNHHHHHaH

Table 2=10

2=-61

D

n

-.700691631307825915 9LOE
-0,172926 38512056821097LE
« 3021102691:90981208L6 30E
+296000071565089620851E
-.102975125398930052371E
-.191061717L92799559388E
« 30092395095 35126904k 32E
-.133232366 38790471 3760E
- 76122291271 3176726357E
.85099L329133701780251E
162675880891 976768802E
-.3L178838574L4768603123E
«. 2701306298 336856 3710E
1121945461 38271726615E
-.815317134722237 3628LLE
=,31835097297L930095218E
.1989782L93033281L756LE
+78065720611:69369579LSE
-.105L611200008074122780E
«.1563297 20659350104 282E
3985237 357221357166 25E
+1963080L106718763L12016E
=.126091L66443172167816E
«229775799379091896537E

« 3161119996770127167665E
«.283001741993019176L780E
-.81 3561132600507 3585 2L1E
.132197256989378198077E
.1502251188L7528990LL 3E
=117 37457 20389L611397 85E
=.133433575875L02257L7LE
+1LLLoLs6LLT 3025958993E
«.52560123%919508639310E
-, 382518041958L23898398E
« 392093656 21:8619176020E
85L1857569658982L8908E
=.166790003306127 3L0751E
=.11119396700L010822819E
56999825 333699031 3L1SE
1799669L9271702611900E
«,167565L76 382404105172
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COEFFICIENTS IN THE EXPANSION OF Ts(q) IN SERIES OF POWERS OF

k;uchnsaow\ruvoHo B

SBBWRREUYBEI BIRR

Table 2-10 (Cont'd)

S =2

%
0,L0879L9LLL1 309706166LE
~0.100000000000000000000E

0.,000000000000000000000E
.%53626149811;71032 3 38885
« + 250000000000000000000
-, 331226613155411:233100E
.15897561171620L412869E
95807211981 687146611815 3E
-.80771L31512558L396657E
-+ 28960632 39L7006886556E
« 3769821292967 3685 38L,2E
.87799588209547027 2155E
«.167760105020311L424762E
= +255967606L932L7866609E
721539426891 97L386250E
.6714081123208715 342 341K
-0 3011942 37401875427 363E
=135 36169L56L129L19LL1E
«1225261:85280281;,000809E
157 1i76716681860290409E
-.118352355261 311425656 LLE
.200061:782665822597609E
+18L41196002719801956776E
=.160211145918213774909E
«+675271L0633L836L56618E
.94582100656 326777 3898E
.233658608898229907082E
= 19091138891 3865 LLOOLYE
=+7142563511396239639021E
+235117 329214628616 321E
2020665696277 308910 38E
-.1068191687975659858 31E
=+360831999518602782712E
.1624238649515813L07 25E
=.561 3521065 L4805958278E

. =+1912k9915190L169358LLTE

.1115231668096 149651 3708
~75687 3375397621 3119870
-.81687051951502371 4,101
=+ 2831929956707 39877330
17636693050 378L312220F

n

1 0
1 1
0 2
1l 3
+0 N
1 1
1l 6
1l 7
b | 8
2 9
2 10
2 1n
3 12
3 13
3 1L
3 15
I 16
b 17
1 18
3 19
5 20
5 21
6 22
6 23
6 2L
é 25
7 26
7 21
7 28
8 29
8 30
9 A
8 32
9 33
8 3
10 »
10 3%
10 n
10 38
1 39
1 ko

2=62

Se3
%

0.55205598280955510591 3E

~0.,100000000000000000000E

0.,000000000000000000000E
.181018660936518368637:-:
250000000000000000000E

-.6095 31616 3116L7605221E
.21L688L137759271L30077E

. 2385682682117 30906 38LE
«.11730347 39419815045 9SE
-,100L0808L57 934071911 LE
«93089488066151591677 3E
.1369941176766931869203E
-.5635L575 37861338216 36E
-.192318223313878665179E
«3319096798L033L8 6LILE
54220156 3916 376258 303E
=.19156026667 34672787 22E
-, 3608340L152007 3565891E
.1087 319188930994 8L2L LE
<1L797L67 3976111 L4 2151E
-.608060015755L90LL0O192E
~=.558L12645 31695755255 1E
«+33525081259921 336 3659E
.1758635076032035L2119E
«,1822176008L11L41022970E
=, 28707072019486256LLL19E
<9756 3861320080920L21 LE
=+19513003891671 341 3993E
-.5138738357328171311L1E
2898825517 26960k 3906 9E
2656615 118905611 36602E
-,253001551104220958585 2
=.134352379599288 31076E
.1865289616L3L3077L135E
+661261657 3336056811 IB6E
-.12608526886612937893LE
. 806910306 330725607 2L9E
11120762881 39476560057E
-, 19618672851710567965LE
-.595276L131077L7 3231L51E
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COEFFICIENTS IN THE EXPANSION OF Ts(q) IN SERI=S OF POWiLRS OF 3

oo~ oonEFwN+HEO o

Table 2=10 (Cont'd)

s =l
D

n
0.678670809007175899878E
-0,100000000000000000000E
0. 000000000000000000000F,
226223603002 391966626F.
- . 250000000000000000000E
-.921188133996909257102E
. 26392753683612396106LE
LLL773925819637973L5 3
-.22262011657159197 371 32E
-.23228352L1,22012097 350F
.173097283218019533699E
.126L8 3119431225848 301E
-.1291193L807L697L9795LE
-. 70l 3566562794051 3355E
. 9389088564 39637652L59E.
. 396153872687L428L 3453k
-.67071868651L875577695E
-.223U1195893915186 301 2E
1472652017 38751729 3896E
.125109218560697874781E
-+ 329316 3212,075115021 9E
-.689937578L74802978072E
«22723090L69L1 28226 376E
. 370601560258901527 36LF
-.155351878 39025849561 LF
-.19061209019556L 5,56 33K
.105282025903881159807E
« 90934796 3725712870L2LF,
-.7072990L1L97 392062528~
-, 372921331 26L621LL5658F
.11709508 398600016 3LLLLE
«972990353516545271 368E
-.3106561,96081978L7179LE
« 33410016 3974L23107L1L9E
.20286911897967158776LE
-.86018838152675081.0370E
-.13102387981298L766 356E
. 9854008977421 23353667E
.8357691186223005 34071E
-.921547327665523841005E
-.5255316539583065251 30E

+

OOV FEFEEFEWwWWODORFOFPOHH

NOHEHWVWV OO

VoI EWNDHO B

263

s=5
Dy
0,79L41335871208531231LE

-0,100000000000000000000E

0.000000000000000000000E
«26L80L1L5290L028L 374 38E
-+ 250000000000000000000E
-.1262185169000L 3266556F
. 308938528388033177011E
«T1LL26256733515338 3981E
-.305028082508),3789L4178E
-.113850981,0023860337373E
$27772238761129951298 3E
.78159701,3881791580871F
-.2L2736672093095L00322E
-.1857738870L725118927 3E
.20699851,191806L754035E
.1215427.95656L 3700008E
-.173599803803909220190F.
-.84221735537301479890LE
«143802LL 497858747231 38
.571296131911481.06 3048E
-+117958786076780056L27E
-.386839168525765089033E
+9596811310540354019398FE
26020287375 36203006971
-.775166338622123638896E
-.173028616833558957695F.
.6220179L8L5 3909056987F
1129407 31678008807032E
-.1967391571761172L862 3%
-.716856606306116334992F
« 393203952651806751L6LE
.11356L,76887687::3L77689R
-. 30983481132}3042928861E
-.2L46178U1L794792126796E
. 21267319461,21028 2L 360K
.120705188769981 359165F
-,188891710891867397151E
-. 39689976 39556613966 35E
+1L6074712L679198005 38E
-.1066117372012L32576L3E
-.112183000963845279888E
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By using Eqse (2-55) and (2-56) in Eqse (2-21) and (2-22), re- Y
spectively, 1t can be seen that the C, and Dn satisfy the recur-
sion formulae

n=1
ncocn = -(n-2)Cn_2 +Z mcmcn-m (2=57)
n=

where C, = By and C C) = 1, In Program 2=1 we show an algorithm
which will permit one to compute these coefficients. In order to
relate the FORTRAN varlables to the mathematical variables, we
let N denote the largest value of n for which the Cn are desired,
and we let the Cn be denoted in the FORTRAN program by C(I),where
n = I, Finally, we denote the value of ps by the symbol BET. The
subroutine to accomplish the setting up of the array C(1), C(2),
C(3),e++4C(N) has been written to yield double precizion results.
However, the author wishes to direct the attention of the reader
to the manncr in which the constants O and 1 have been inserted
in a DATA statement. This feature 1s lmportant because the use
of 0,0D0 and 1,0D0 has been avolded 1n the program's executaule
statements and therefore the only changes that must be made to

Program 2-1

SUBRGUTINE C@EFSQ(BET,N,C)

DJUBLE PRECISI@N BETi C(N),ZER@, §NE, DFLEAT
DATA ZERf,¢NE/0.0DO,1,0D0/

DFL@AT (KK) = DBLE(FLFAT (KK))

NE/BET
-C(1)*C(1)/(PNE + @NE)

£ oy )

DFLEAT(I-2)%#C(I-2)
2M=1M
C(I) = C(I} + DFLEAT (M)%C(M)*C (1=M) -
2 CPNTINUE
C(I) = = ¢(I)/DFLOAT(I)
1 CENTINUE
RETURN
END

~ 0
W=+ u
o

"4
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convert the program to single precision is to delete the D@UBLE
PRECISI¢N type statoments, the arithmetic statement function
DFLOAT, and insort "DATA ZER@,@NE/0.0,1.0/" in place of the DATA
statement that anpears in the program.*

In ordecr to check on the numerical stability of the recursion
tormula in fae (2=57), thec calculation of the Cn(Tg) in Table

2=9 was repcatecu in singlc precision arithmetice The results are
listcd in Table 2-11, The process seems to be "self=correcting"
since there are come cntries which are good to only four figures
in the middie of the table, but the result for n = 80 displays
agrecement to six figures (after round off is used to write 080 =
~0e1272303=21),

In order to obtaln the recursion formula for the coefficients Dn
of Zqe (2-56), we need merely insert Eqe (2-5l;) in Ege (2=52) and

find that
n=2

nD, = -Z mD Dy e (2-58)
m=1

where D =a., D, = =1 and D, = 0. In Program 2-2 we present an

s’

algorithm for the obtaining of the array Dl’Da’D3""’DN’ However,

before we consider this program, we will make a digression in or-
der to emphasis the importance in practical problems of the case

*It 1s a good programming practice to avoid the usc of constants
such as 0.0, 1.0, and 3,1415927 in the "body" of any program in
which therec exists the possibility that one might need to go to
DPUBLE PRECISIZN since one would then have to replace many of the
executable statements with new statements containing 0.0D0O, 1,0DO,
and 3.1415926535897932D0, respectively., The use of devices such
as ZER@,#NE,PI in the executable statements and the inserting of
the constants by means of a DATA statement permits onec to readily
convert a program written in double precision to use it in single
precision, or vice versa.

2=65
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of q very large. We will then introduce another array which is

important in practical problems, and use Program 2-2 to set up

both of these arrayse.

In Fige 2=5 we have presented several curves uhich show that for

vertically polarized waves the cases in which g tends to infinity

plays a vital role include virtually all cases of propagation

O @O~JOC\NF W PO 8

Table 2-11

THi CC.I'T'ICIENTS on(T:) AS COKFPUT D IN SILKGLw PR.CISTCH

cn
0.10187930E 01
049815536 7E 00
-0e.LT203778E 00
0. 13u4C0523L-00
~G.71602707E-02
~Co9BITULIHE-02
Ce?2129035L-02
0 13461956E-02
-0.56666862E-03
-C. 19195578k-03
€. 15557887L-03
Ce VRY110TLE-OU
-C.Uulub6278E-04
Ce?u15177T6E-05
Oe 17(56239E-04
-0.2u616357L-05
-0.22318140&-05
Ce 10840956E~05
Ceu1C0C339E-06
-C.2%8026834L-06
-G u2217u50€-07
Co 116111 1E-06
0. 1CUS6TBYE-O7
-0.31502187E-07
0.92562826E-08
Coe73732547E~08
-0. 4180967 1E-08
-0e 134949 19E-08
G.15133817&~C8
0.98226314E-10
-0.47271572E-09
Ge 465596900E-10
Ce 1295C258L-09
-C.46165995E~-10

n

Cn
~0+29925379E-10
0.20137136L~10
Ge 02409587~ 11
=0.71946632t~11
=Ce 7309u466E-13
0.222871G7E-1
~Col3u31269E-12
=CaH994525CE-12
C.?2578C213E-12
Co13276179€-12
=Ce 107U3U66E-12
~Ce 19145934E-13
Coe37ULCO696E-13
=Ce 17673u79¢L-14
=0 11336792L~13
0.29012308E~ 14
He2952C279E- 14
-C. 15230350E-14
-Ce6113287TTE-15
Ce60614TISE-1S
0.66508U472€-16
-C.20u49532CE-15
0.21679091t-16
C.60237C29E-16
-Ce 1941 1H66E-106
-Ce 150 19u82E-16
Cev2bLU552T7E=17
O0e2B2LLS5USE-VT
-0+353675C5€-17
-0s 1580379410
0. 11573625E-17
-C. 17181695€E~-18
-(,428336u5¢k-18

2=66

67
68
69
70

Cn

0.12985392E=-18
0. T7uBOUSBE-19

-0.57T66L4TU0LE-19
“lse ‘265'2"‘:-'9
Co21074336L-17
-Ce. 57643501L-21
=Cethol6721L-2C
Co15187661E-2C
N, 1IBIL3189E-2C
0. 8676852 7e-21
-0e399319u0cL-21
(«36222523E-21
CoD199L9KCE-22
-0, 127231 46c-21
G 10CHCU23L-22
Ne 33772L12E-22
-Ue 11304UBOE-22
-0.10073223€E-22
{enT878818E-23
(o232uCHT8BLE~23
~0.2290G5735£-23
-0a 1695410 3E-24
CoTTUCH639L-24
=Ce 1085(CT25E-24
~0.7226RB3737¢&-24
(He821950372¢-25
CoehSI536L2E-25
=0, 38520651t-25
-C.93833368E~26
0.1454u4777-25
Qe 12688UuS577E=-21
-Cel7271444L-26
0.95721225¢e-27
0e 132759000E-26
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over land when the frequoncy exceads several megacycles and all
cases for propsegation over the sea when the frequency exceeds
several hundred megacycles. For the case of horizontally polar=
ized waves, thc case q = o plays an important role thioughout the
wavelength range from the infra-red to the longest waves for all
the values of the conductivity and dielectric constant which oc-
cur In natures These circumstances certainly justify our giving
this case spccial attentiones It is notecworthy that Pryce and
Dombt devoted their cntire paper (Ref. 25) to a consideration of
the limiting case in which q = oo,

In many cases, the magnitude of g wlll be so la-g: that one need

only uscd the cporoximation of Eae (E=T), namely,

oxp(igws) = exp(igT:)exp(ig/q) (2=59)

to ap.roximate the functions w(x,y,yo,q) and F(x,y,q) defined
in Base (BE=25) and (E=26) in the foll:oing manner:

Q

\"I(X’YoyosQ) exp (ix/a)W (X;Y)Yo:w) (2=60)

]

F(x,7,q) = exp(ix/q)F{x,y,x) (2-61)

iinen Eoe (2-59) 15 not sufficiently accurate, we can often evalu-

ate the functions for large q by means of the expansions given bclow.

Since this case of q » » is so important, lct us evaluate the
coefficients F| (a) in the expansion

[ o]
dt_(a) 3
i — +:z: Fn(as)q nexp(ignﬂ) (2=62)
de n=3

The reador will have to "look ahead" to the discussion In Section
5 of the Olver relation und the "normalization constant" to grasp
some of the r.asons why this expansion is so importuant. However,

2=67
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we will assert (without a demonstration of the method of proof)
that the lmportance lies in the fact that the following relation-
ship

1 _ 1 dt  (q)
(1 - o /a) [y (z )1 (w (1)1° T
1 dz_(q)
= - 5 — (2-63)
hn[AL (-as)] dag
permits us to express the diffraction function Vil(g,q) in the
form
°° (1gz.)
expligr
v11(€!Q) = '2\/:'-:!--'IT ; ) = 3
s= (Ts - q )[Wl(Ts)]

exp(igt,) dt,(q)

n

ATy (2-61)

g=1 [Wl’ (Tcso) ]2 dt

-]
S

Therefore, with the ald of the coefficients D, which are needed
in Eq. (2=56) to compute T = Ts(q) and the coefficients F_ which
are needed in Eq. {(2-62) to compute dTS(q)/aT: , We can evaluate
the diffraction function Vy,(£,q) for the case in which q is very
large. Since V,,(&,q) is the diffraction function which is re=-
quired when both source and receiver are at a very great helght
(in tcrms of wavelength) we observe that this function will be
very frequently encountered in prectice since the case of large
values of q occurs in the high freguency range and it is there-
fore going to generally be the case that the antennas for trans-
mission and reception are at a "great heighte." We should also
make the observation that the diffraction function Vo(g,q) can
be readily evaluated for the case of q - o by expressing the
residue series representation in the form

2268
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r—--_-...h.-_. =t

exp(igt,)

-1/IRE q”° Z

Vo(g,q) l - Ts/q

VIRE dt_(q)
-1 = ) exp(igT,) —f— (2-65)
q d(a)

Therefore, only the coefficients Dn are required in order to com-
pute V_(£,q) for very large values of qe

By suitably combining the ideas employed to arrive at Eqgs. (2=6l)
and (2-65), we can also evaluate the diffraction function V,(£,q).

Sincse

exp(iet. )
~Ts (2=66)

vl(E;:Q) = 2\/1-'E Z

(g = qz)wl(ws)

we need only observe that

1 _ 1 [d'rs(q) d'ts(q)] et
[ = 7/a%w (1)1° [w D)%ad  a)

to see that we can express V,(g,q) in the form

1
2v/In exp(izt ) [dT (q) dv.(q)1 2
V1 (€:Q) T 8 g -—-1;8 ] (2=68)
] :E: Wi'(f:) df: d(a)

These results reveal that the knowledge of the coefficients D,

and Fn permit one to evaluate the three types of diffraction func-
tionse Let us therefore return the to the development of the
background theory for Program 2-2 in which these coefficlents

arc to be computed.

2=69
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Since F (a) = dD (a)/da, Eq.(2-58) leads to

ne=2
dab_(a)
— n 1
Fn(a') - - Z m[ann-m-Z & Dan-m-2]
da m:l
ne=2
(n = 1)
= - — ;= FoD 2 (2=69)

where Fo =1, Fy =0 and F, = 0. Program 2-2 has been used to
set up an array for each of these coefficientss In writing this
program we have done what is so often required in translating a

Program 2=2

SUBRFUTINE LARGEQ(ALP,N,D,F)
DZUBLE PRECISI@N ALP,D(NS,F(N),DFL¢AT,ZER¢,¢NE,AN,AN1
DATA ZER¢S¢NE 0.0D0,1,0D0/

DFLPAT (KK) = DBLE(FL@AT (KK))
D(1) = ALP

D(2) = ~gNE

D(3) = ZER@

F(1) = gNE

F(2) = ZER@

F(3) = ZER@

Dg 1 = U,N

AN = DFL@AT (I-1)

K = I=3

D(I) = 2ER¢

F(1) = 2ER@

D 2J =1,K

L = K=J+1

ANl = DFIZAT(J)

D(I) = D(I) + AN1#D(J+1)*D(L)
F(I) = F(I) + AN1#(D(J+1)#F(L) + D(L)*F(J+1))

2 CENTINUE
D(I) = = D(I)/AN
F(I) = = F(I)/AN
1 C@NTINUE
RETURN
END

2-T0
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mathematical expression into FORTRAN instructions = we have di=-
mensioned the arrays D(N) and F(N), but since we need a place to
put Do and Fo, we have used the following convention

D, = D(1) Eig= F(1)
D, = D(2) F, = F(2)
D, = D(3) F, = F(3)
Dy.q = D(N) Py = F(N)

The quantity denoted by ALP in the subroutine's argument list is
the Alry function root ag which is required in order to determine
the coefficients for the root Ts(q). In Table 2=12we give the com-
puter output which results from running the subroutine contained
in Program 2-2, The case given in the table is that for s = 1,
These tables were actually computed with the subroutine given in
Program 2=3 rather than the one which is designated as Program
2=2, We take this occasion to present the instructions contained
in Program 2=3 in order to permit the reader to have an example

of a program which employs the NPREC subroutines which have been
discussed in the Preface. There is a one-to=one correspondence
between the instructions in Program 2=2 and those in Program 2«3,
but the use of the NPREC subroutines requires that one put in a
number of additlonal instructions which ensble one to employ the
computer software which permits the working with 21 decimal digitse.
The reader who is unfamiliar with NPREC will notice that in order
to store the numbers one needs three conventional 36=bit "words,"
it is necessary to set us an array such as D(3,51) in order to
obtain 51 values of D. Also, since this is a FORTRAN II program,
the use of adjustedtble dimensions in the arrays i1s not possible
and therefore the integer 51 appears explicitly because we set out
to obtain the coefficicnts for n = 0, 1, 2,¢¢¢,50,
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Table 2~12

THE COEFFICIENTS D, (ay) AND F, (a,)

Dn(al)

«233810741045676700C00E )
-.1€000C000000000000000E 1
+0.0
«779369136819522332222¢ 40
-+.250000000000000000000€ +0
-+ 10933492525693754T187E
©9092639929565T6055554E
¢ 1OUTUOSTO68950TUUSUOUE
-+2642260693T70932405702€
~+213710405546052163332E
«691693414275288888169E
«112297788720997851922¢€
~.16636638T432300976017€
«65632618554506534UBL2E
«363549113840041806875E
-+366549831925517799523¢€
-«69016034520557043¢& 150¢
«131615045605843931255E
«9813862191476084377u8E
-+3934084089131592¢47568E
-¢213671996252882116077E
«103281515436985560184E
-+«557005440585398234408E
-+238101946411483142016E
«289UT13146T7T4802638095E
+458512006481859653460€E
-.104802124890582256 27 V&
=+¢596169025865546022592E
«317985515060398151420€E
-.318078127520901523£29¢
-.842338171333703163827€
«59933441288006L196210E
«193151282158£636813487E
-+281949289996349875198E
-35T114653812512895799E
994 137337829276410111E
«373873844573088530982¢€
=+297606709730805521484E
«T970894846T75490000935€E
oTT6451218363028760465E
-+T006916313078258T7617TE

*
NA~NO NN EWVME NMEFEFEFFWENMNWMNN A Nt c et O e

2=T2

Fn(al)

« 100000000000000000000E 1}
4C.C
+0.0

+333333333333333333333€ +0
-C.C

~e935242964183906799999E +0

.3888888688888888888888E +0

ocIUZECN12SESCEECUCE2EEE

=e22601VTOUISTTTITTUTHOOOE
-+«517T46U491527850323975E
+ SCSCL 1807 136252178040E
e911112745519882451207¢
-+305386585u96655844333¢F
-, TUT7305883153T44299052¢€
+90068086568U4 2247 €919 2E
=4329562820431761948952E
-+234546326422511212139¢

e ISENE2LHENSHTIZTITTG3LE

¢52273091946829996U612E

~e992323025066159018309¢E
~oEBZENEICCIVTT1E2ECSSEUE
+338534769300161144BO9E

«U378534T6401823925701E

~eS$SGGECIIU3ECCO63236T6E

«495493922692861108129E

0 25T4206062T1768T065T8E

-+303645112186488398590E
-~ 554454619032728532684 ¢

«122585863334508983208E

+838693002088812401608E

~oHOBCUNCTVIZZESEENTIZZIE

« 128148424 303529659982E

« 1178648916220436T665U4E

~oTTESV122CTZNSESE2CESCE
-e294166033377288326956E
«412802065801852456T725¢
eSGTEICTELNTLZUEL23S3 16E
-+ 158099112391683853018E
-+ T47523525814095398903E
+5C929368834T906588641F
-+ 10343849303837555485u ¢

DO NAD NN AN ANVNAVO I AaVNMEEWE W WMLmUWNDA =N = s et ot o
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Program 2=3

SUBR@UTINE LARGEQ(ALP,D,F)
DIMENSI@N ALP(3),D(3,51),C(3,51),AN(3),AN1(3)
COMM@BN AN, AN1
CALL SP2NP(0.0,D(1,3))
CALL SP2NP(a1,0 »D(1,2))
CALL NPREC
D(1,1) = ALP
CALL NP@UT
CALL SP2NP(0.0,F(1,3))
CALL SP2NP(0.0,F(2,3))
CALL SP2NP(1,0,F(1,1))
g1liIs= Ly, 51
AN = FL@ATF(I-1)
CALL SP2NP (AN, AN)
K =1« 3
CALL SP2NP(0,0,D(1,I))
CALL SP2NP(0e0,F(1,I))
DF 2 J =1,K
L=K«~J+1
AN1 = FLEATF(J)
CALL SP2NP(AN1,AN1)
CALL NPREC
D(1,I) = D(1,I) + AN1#D(1,J+1)*D(1,L)
F(1,I) = F(1,I) + AN1#(D( ,J+1)%F({,L) 4+ D(1,L)%F(1,J+1))
CALL NPZUT
CALL NP2SP(AN1,AN1)

2 C@NTINUE
CALL NPREC
v(1,I) = = D(1,I)/AN
F(1,I) = - F(1,I)/AN
CALL NP@UT
CALL NP2SP(AN,AN)

1 C@NTINUE
RETURN
END

Before leaving the subjcct of these classical expansions, we will
present the numerical values for the coefficlents for further
terms in the explicit representations for A;(T) and B;(T). The
data which we have obtained in presented in Block 2-=1. This is

a FORTRAN IV BLOGK DATA subprogram and the date are placed in

a labeled COMIMAN which we have designated as BREMMs. The data
consists of the arrays BREM(18,9) and BR(20,3)e. The computations
which led to the obtaining of these data were undertaken because

2=13
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Block 2=1

Q00NN ITNO~OO

TW3u4
TW3u8
TW3NE
TW3uE
TW3ud
TW3ug
TW3Y8
TW38
TW3¥8
TW3Y8
TW3uE
TW3Y8
TW3ue
Th3NE
TW3¥8
TW3us
TW3IYE
TW3H8
TW3ue
TW3¥8
Th3YE
TWIE
TW3us
TW3d8
TWaue
TW3d8
TW3d8
TW3NE
TW3de
TW3IYE
ThW3u8
TWIHE
TW3¥8
TW3ye
TW3INE
TW3YE
TW3uE
TW3d8

/700+0€CCECECECCeECEEeEeCeeEs 0~
¢¢0+0T0L82568L209€98Hh2TL8B 0~
*G0+098826TT1882619SCHhTLH2ST 0~
¢+S0+00000000SL8T26HhS0 . h9T* 0~
*T0+098H6L6TEI6LHLLESILTIL 0+
*$0+060606060606060658S99T1° 0+
*H0+00000000000SLEHELEDLO96°0+
‘©0+3000000SL8T26H6CCSBHhh2 0+
4204+0EHE982LHEIBCEHEIBCI0H 0~
*$©0+09225HL968TTHL95069602° 0~
tH0+0CCEECEECCBOLLTIELTHELE 0~
*10+01h62T68£62T168€62T68ET9° 0+
‘C0+QLSTTOG00SH68LEBSICOCL 0+
*©0+40999999999916228TS09LT° 0+
¢ 00+0SHSHGHSHSHSHSHSHGSHSHG 0~
1C0+0SHSHSHSHSHSHSHSHB96E2* 0~
¢€0+0000000500000S5218L9928° 0~

¢20+0T€00L2TTS094mL860CT8HS 0~
‘H0+0S€0688GTLSGS2BT2E2LES 0~

4G0+0SSGG55586666652¢€L2h22° 0=
*90+0000000529S1SEO0TTIBECLh 0~

‘C0+Q9TTHBESTIHBBSTIHOTI02° 0+
‘h0+369TTCBBITTCBBTE689ESLS 0+
*©0+00000000000SLEHEL2SEBL 0+
400+08CSTINBESTINBESTIHBES 0=
‘c0+0THCEHB208B6ELBSEHSBEBH 0=
$H0+0ECCEeECeee80LL9000TTH 0~
¢©0+00000000S.8T126hh09692T° 0~
‘C0+09CI9STHEOTTLOEGHLOCTLST 0+
‘H0+0CECECECECLEEBGE682CTLT U+
¢€0+000000000SLE6SEEH6T099°0+
s20+0lcLeLeeLeLeL2L2L2B82 0~
*€0+0000000000000000051969° 0~
¢€0+000000000005L8T26hhhhE°* 0~

/ (B84T=T4(I°STINIYB) *(LT=T*(IhT)WIYG)

/TO+QTTTTTTTITTTTTITTTITITIICIGOO+
Q0+QLLLLLLLLLLLLLLLCOTHLZ O+
¢¢0+00000000000S2TBLS2H0BT 0+
420+082TT8029hhThSE6LLHL26T 0~
4€0+0,999999999999T+H092LLT°* 0~
¢T0+0SBCHTLSBCHTILSEZHTLSTH 0+
¢20+0000000000000000SLEHh08°0+
¢00+0TLSB2HTLSBCHTLSBCHTLG 0~
¢20+000000000000000000S5L4SE° 0~
*10+0222c2ceeeeeceeceeeceee 0+
¢20+0000000000000000SLSHhT*0+
*10+00000000000000000000€9° 0~
¢ T0+0CCECCEECCCCECEELeCeECe 0+
¢ 00+0L,99999999999999999999° 0~
¢*10+000000000000000000005T°0+

C(LOT=T(I*CTINIUB) ¢ (94T=T¢(I¢2TIWIUB) ¢ (I¢T=I*(I*TT)NW3HE) VLVA

¢20+00T09LL0892HhhLhE609C2L 0+
‘C0+0ECCECEECECECEECB06HBE 0+
4 00+0S5G5555555666565GG656G° 0~
‘CO+Q8LLLLLLLLLLLLLRSTHEOT O~
¢20+Q000000000000S.£60964H6° 0~
¢20+00000000000000000G5L99€° 0+
¢20+0000000000000SLEHEL20S 0+
120+Q222¢2c22222ee2eceeee8lT 0~
¢20+0000000000000000527892°0~
¢20+0666666666666666666£9T°0+
¢+00+0000000000000000000009°0~
*10+000000000000000000548L°0~
#10+000000000000000000SLEH° 0+
¢10+0000000000000000000052° 0~
*10+000000000000000000000T° 0~
/ (6¢1=1

¢(TI40TIWIUB) ¢ (S*T=I*(I¢6)WIAUB) ¢ (Hh*T=I*(1¢8)NWIUB) ¢ (h*T=1

S(I4L)WIHE) ¢ (CT=I*(I*9)W3YB) ¢(C¢T=I*(IS)WIYB) ¢ (2¢h)NINE

S(T¢h)NIYB ¢ (S¢CINTYB ¢ (T¢CIWIUD ¢ (T42INIYE ¢ (T*TIW3YE ViVa

¥8/W3Y¥E NOISIJIINd 3718N0a

(€402)48¢ (68T )WIUB/WRIUE/NOWHWOD

viva 2078

aoax

<CO0O0UWLOI=IXY IZITZ000X SCOVOWLOXIIDIXYITZO

2=Th
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Block 2=1 (Cont!d)

chW3yue
2h3dg
ch3dd
ch3d8
ch3yd
cW3d8
2W3dg
SW3d8
cW3d8
ch3Yg
ch3y¥g
ch3y8
W38
Ch3dg
ch3dg

/10+0G6£2.,80€9090TO0TLE90T9° 0+
420+0hhlC0h0€2,.0082T060L0T°0+
420+0H0826294h£606266L9€022°0+
¢T0+0TLhBCHEETSE60908TIL2TS 0+
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the author was interested in obtalning an asymptotic expansion
for the function V,(0,q) which describes the "foward scattered
field" which has attracted so much attention in the literature.
This function can be defined by the relationship

Vz(o’Q) = éirg (Vqa (£yq) = ] (2=1(0)

2vn g

An expansion in powers of g can be found "operationally" from the

divergent series representation

- 1 dt_(q) ,
V2(O,q) =-2\/:H; —> : (2=11)
s= ¢S[w1(ws)] drg

and an expansion in inverse powers of q comes from the divergent

series representation

> 1 d't:(q) _
v,(0,q) = /IR Z; — 5 (2-72)
8= (wy" (1)1 drg

Therefore, the quantities which were sought in the computer pro-
gram and which have been prepared for re-entry into the computer
with the aid of Block 2=1 were the derivatives An(¢:) and Bn(T:)
which appear in the expressions

de(q)

’ (o] s (. 0y 2
%G 1+ Al(ts)q + A2(Ts)q + oo (2=73))
s

dt,(q)

a0
dxs

1+ B} (¢¥)q™+ By(t)q™2 + ... (2=71)

where the explicit forms for the first few coefficlents are

2=76
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M) = -3 , B (v) = Bj(1) = 0

0 = o . B, e =
2t P 5 ' B

A;(T) = - ;;3 ;:3 ) BS(T) T

Al (T) = 158 —?g ’ By (1) = I%

'he array BREM(18,9) in Block 2-1 contains the numerical values
of the coefficients Eg in the expansion

K
1
A;('r) =—5[ z; El;: 'r3m] , K =[(n=1)/2] (2=75)
T

m=1

where the [«+.] denote that K is the integral part of the expres=
sion enclosed in brackets. The data go as far as n = 18, The re-
lation between the notation in Eqe (2-(5) and that in Block 2-1

is B = BREM(N,HM).

In Table 2-13 we give values for c,(B) = A (t)exp[iz(2n - 1)]
and E (B) = A’ (t)exp(ignn) for the case in which P = f; and

T = 14 = Byexp(ign).

The numbers which appear in the array BR(20,3) contain the non-
zero coefficients which appear in the expansion

K
Bi() = ) AR, K =[(-1)/2) (2=76)
m=1

In Table 2-1l. we give values of the Fﬁ for n < 38. The array
BR(20,3) can be used to set up an array F(20,9) which is related
to the coefficients Fﬁ by means of the relation Fﬁ = F(N,M). This
array can be set up by the following set of FORTRAN statements:

(Text continues on pe 2=8l)

2=77
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Table 2-13

THE COZFFICIENTS C_(B,) AND E _(B,)

C, (1)

« 101879297164 TUI108Y02E
«9815536693u45656433497E

1
+0

By ()

«100000000000000000000E
-.9634476U5C680494159T71E

«13923u704718081299304E
-. 16053054 1253442541730C
«164363810136019%48228¢L
-« 1563953421003C0465911E

- UT28377952537/4034105E +0

« 13LL052U5313929u8T297C +0
~.716029388859209580331E -2
~.98T7428212063706960197E -2

oo FwhhrEro B

e 129L436903271273955062E

- L72963U527039120286T1E -V
«6572528223318507 76568k~

10
-9

=6 13U2H5T6725111T7T905uE-10
-e299L1065860u387531830€E-1C

«2014UKB23552162074024CC-10
«50372341365009437U329E-11

- (19688066CY140233879uUEC-11
-« 739L09B3216HY63117529€-13

e222911109641159853378C-11

-, L3Uu5C039839UT685659U5E-12

2-78

«201288471684U99TUTIIIE -2 «TLOU3300102uT60UTOO6TE
«13462118C350283637869E -2 -e 11963904081U4TT76139250¢C
-.9666318351013067907230C -3 «972004600707734501909C
- 191945UbUBOTH59312143E -3 —e ISTTVIS55THU966854524 5L
« 19557 1157435453498L406E -3 «9569/74C055713202685596E
< 169166890896791432830t -4 - L IU6TBILE099079026854¢
-.408702510997938818891C -L «29286u5U68713295T7T9316C
«2B 1T908U285559TUO0TUSE -5 -.2011U8220818662611706E
¢ 1005U4124693377T437353E -Uu « 134661L0T1095359702616E
- 2460LL2TUL31581336876C -5 -.BB0L45331403569040C09u6LC
-e2232577276269529U5715k -5 «5630610882171953364019E
« 10BUSTUCOY6UOIV0682U6E -5 -e352627932244345050180¢E
«4097096668U90168BU97HO0E -6 «2165232991L4U 131938594 1E
-+38009 1416745867724 10E -6 -« 1305CHU19632632016660E
- U232222252102223621635E -1 o TT297532U1216577268u41C
«A1O61TSTITUISTII0050392E -6 - U4502276L3940897757B68E
- 1049 18CL63611550163168 -7 «258073416035174899L69L
-«314824302962560680308E -7 - 1456886041695 TU106685E
«92U529616068753927830C -b «8106013172L2295926351t
e (37928LOTTOIS61035388E -8 - UULTHIHSI1072146TB6TIC
- L 18L23398)V1u797702311E -8 «240b60560662108797T668E
- V3UTTU622393338725142C -8 - 12b6896996uT7300672113E
e 1S 12U 11C5TUHLTBIZ2812E -b 6TI4EUO0UBIN3PIGBRSIE
«987063651581319956735E-1C -«35L4287393074UL0126080E

 1826T5229276037788H50E
~e931339769873563380912¢E
SUOI6TOEIUGETIONTIZ2S55TYE
-«234407592285999801765C
« 1 1582U55L4H656TTU6 12BUE
-e5606671662757563405209E
«2745368920314720872368L
- 13176663923238L4328269E
6268963374 70605635857C
-e295697786310450U413045¢E
« 1382390279554 6491319U45E
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Fwmrpe F wror w e

wnmEwn =

Table 2=1l

COEFFICIENTS FOR POLYNOMIAL REPRESENTATION FOR Fn(T)

Py
n=3
«333333333333333333333E +0
n=>5
+0.0
.AOOOOOOOOOOOOOOOOOOOOE +0
n==56
. 388888888888868888888E +0
+060
n=~"1
+0.0
+0.,0
11 28511,285711,285711128E +0
n=2_8
+0.0
« 966666666666666666666E +0
+0.0
n=29
« 5061728395061 72839506E +0
+0.0
+0.0
o L g IWE +0
n =10
+0.0
+0.o
16628571 2857128571 1
+C.0
n =11
+0.0
+191313131313131313131E 1
+0,0

0.0
L3505l Sl 5 LSl 5L S SLSLE 10

~oumfFwn e onfFwn e oW = nmFwn e

-onFwp =

e

n

n =12
.692313345091122868899E +0
+0.0
+0.0
+2Lu335862433862433862UE 1
+0.0

n =13
+0.0
+0.,0
LU453230769230769230769E 1
+0.0
+0.0
LL61538u61538461538u61E +0

n =1l
+0.0
«351388H831626926865021E 1
+0.0
+0.0
«328870336013193156050FE 1
+0.0

n =15
«974186262982559278853E +0
+0.0
+0.0
«BOT194U26L077601L 10934 )
+0.0
+0.0
U6666666666666H666666E +0

n =16
+0.0
+0.0
. 106046C003996003996003E 2
+0.0
+0.0
Lu18631468631368631368E 1
+0.0
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Table 2=1l (Cont'd)

Fp
n =17
+0.0
6207827463 19627738860€E 1
+0.0
+0.0
MU 1435T7662256821920E 2
+0.0
+0.0
CUT0588235294117647058E +0
n =18
«139632680U577T83338441E 1
+0.0
+0.0
«2UT75326 14 107L289222L3E 2
+0.0
+0.0
«512761606095139u28471E 1
+0.0
n =19
+0.0
+0.0
0227626 17157278811414)E 2
+0.0
+0.0
0220367992909346292804E 2
+0.0
+0.0
~UT736842105263157894T3E +0
n =20
+0.0
«107090128007230403744E 2
+0.0
+0.0
JL9347279188LoUBTHTL93E 2
+0.0
+0.0
.610637101460630872395€ 1
+0.0

>

N

(R

2=80

oV O~Jo0\NFw e OW OOC\VIF Wi -

POW O~ NFwWN P

o

n
n=21

«2027Uu5L1T0638T11YULILE )
+0.0
+0Q0

«629761535617690820511E 2
+0.0
+0.0

« 317224604907 1LLUSBY96B3E 2
+0.0
+C.0

UTHIQ0UTHI90UTOHIYOUTHE +0

n =22

+0.0
+0.0
«U62158369946164Y684 THE 2
+0.0
+C.0
«B8832869856451296682LTE 2
+0.0
+0.0
«711784761818536093795€ |

+0.0

n =23

+0.0
«ABIT956382TI813423770E 2
+0.0
+0.0
+ 145954 800035339569026E 3
+0.0
+0.0
+U35983974635539609353E 2
+0.0
+0.0
U78260869565217391304E +0
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Table 2=1l (Cont!'d)

m
F;
n =24
2972195553 7243524432L 1
+0.0
+0.0
AU IBUYULZULY 68T 13663 3
+0.0
+0.0
L6 1565430C26u2722384bF 3
+0.0
+0.0
«815835735185540386616E 1
+0.0
n = 25
+0.0
+0.C
«9G29120317227115C23701 2
+0.0
*0.0
229901 /15C 18353Cu3301C 3
+0.0
+0.0
«DTBQUY2T3L2L15535489 2
+0.0
+0,0
JUT99999Y99999999999999F +(
n =26
’0.0
 30H066UNILB2TIBTE6IS90E 2
+0.0
+0.0
e 390583320 198562067332E 3
+0.0
+0.0
22TT(3164TTUOEB2Y19575¢ 3
+0.0
+0.0
e P22U9LLEV0662TOUIOSHSIE |
*0.0

el ol
W POV O-JoOMNFwW -

PR e
W PO a-yonEwN -

O oW e

2=081

Fa
n =27
JU3BYLOLTIYVOSBE0ON238B82TE 1
+0.0
+0.C
c327755966259362u0TU27T3E 3
+0.0
+0.0
0559252102214 138582868 3
+0.0
+0.0
<Thu5512C08285921330796E 2
+0.0
+0.0
LunlulustuBiuglugiuglE +0
n = 26
+0.0
+0.0
e ITI2U29R4EIVCI0H8361UE 3
+0.0
+0.0
oVCIUUUTTTTICICTTHINC2E 3
+0.0
+0.0
0 A3BSTTVCOH135716321TUE 3
*0.0
+0.0C
S1C31510L2807501148L905E 2
+0.0
n =29
+0.0
«SGTURBETE 999311481 76CE 2
+0.0C
+0.0
12109 1681492824354 75E 3
+0.0
+0.0
e FTUH6T2668696510339u 77U 3
+0.0
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Table 2=1); (Cont!d)

B
n =29 (Conttd)

+0.0
«936766189615653190600 2
+0.0
+0-0
UB2758620689655172413E +0

n = 30
«65206931US4IUTI02U5TTE |
*0.0
+0.0
«6959U5LT9296UU3GI6TTTE 3
+0.0
+0.0
. 188022396839860045014E &
+0.0
+0.0
LLBUUC03ICIUS506T73263990E 3
+0.0
+0.0
<1 1B270663855553701652€E 2
+0.0

n =31
+0.0
+0.0
<1770 IL6L592426888E 3
+0.0
+0.0
«249550314037575970858F &
+0.0
*0.0
< 160582u473370178115902E &
+0.0
+0.0
«1155730Luu31433507TU603E 3
+0.0
+0.0

48387096774 1935u83870€ +0

e

2-82

nNPOYwOONOMNEFEWwWwh P

~o\unFwn e

P
32

n =

+0.0
.838u96463337888808T7T3E 2
+0.0
+0.0
.22897932014124u4052940E &
+0.C
+0.0
«362400452267TU4L03E5T380E b
+0.0
+0.0
L6T14T9258C08439025267E 3
+0.0
+0.C
. 12558886301386BU6TTITE 2
+0.0

n = 33

«VT7330541062T465997CI1T7E 1
+0.0
+0.0

< HU28985723T73963308229E &4
+0.0
+0.0

«STU360CG13C33138uuT8610E &
+0.0
+0.0

e252699166253536099042E 4
+0.0
+0.0

«1U02U51091984663318B67C 3
+0.0
+0.0C

JLUBUBLUBLUBLEUBUBLBUBLIBLE +0

n = 34

+0.C
+0.0
COTINTT22u43411496LT0TF 3
+0.0
+0.0
SOUTIT2Y1:CUOBUBII9628E U4
+0.0
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Table 2=1l; (Cont'd)

Fn

n = 3, (Cont'd)

+0.0
65553993369538826286UF 4
+0.0
+0.0
0644 3395298408425055E 3
+0.0
*OIO
o 1370v1n67CU6603120395F 2
+0.0

n = 35

+0.0
ASTTHHIVIEB2U9CHIVINZE 3
+0.0
+0.0
S5 165C0a0HTITHIUEILITUBE 4
+C.0C
*OIO
J121316535156078C55037E 5
+0.0
+0.0
36275119030 7577062323F &
+0.0
+0.0
JNETTEIHTTAS5019997021E 3
+0.0
+0.0
CUESTILZa5T18285T14264E +0

n = 36

lUS855972182003225723E 2
+0.0

) +0.0
2056289 R2E36130224192E 4
+0.0

+0.0

e 162922 1317CE10526668E &
+0.0

+0.0

« 1125466599956 19U5U9KF 5
+0.0

+0.0
1196293549805 1 1125509 &

1,
15
1.6

pPrPOC CNVIFEW N

A

e
W RFPOWYWOoO~NOMNNFwWhh R

1y
15
16
17
1.8
2=83

FO
n

36 (Cont!d)

(]

n

+0,C
+0.0
AUBTOHTCOTH2083THITIL0E 2
+0.0

n = 37

+C.0
+0.0
S ICUTA2HECTBLLUEPU U9211E 4
+0.0
+0.0
159372661320 U96T2TUI12E 5
+().O
+0.0
«239CUCHN06TLUNTIOIS00E 5
+0.¢C
+OIO
eHO1303901T7260TH068TI18E 4
+0.0
+0.0
C19828964053114519805CE 3
+0,0
+0.0
Lub6LBOLBOLBOLKOL BOUBSE +0

n = 38

+0.0
«225406610380351157893E 3
+0.C
+0.0
«112501v091128576(38¢(5E 5
+0.0
+0.0
«3TU2UTO234L23985H35U9E S
+0.0
+0.0
o 1EUPHST02CBLTIUBH6UO3E S
+0.0
+0.0
s IHUBIETUY0S0I09T229L0E b
+0.0
+0.0
. 160603453183037816598BE 2
+0.0
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cgMM@N /BREMM/BREM(18,9),BR(20, 3)
DFUBLE PRECISI@N F(20,9),BREM,BR

DF11I=1,20
D¢2 J=1,9
F(I,J) = 040DO
1 C@NTINUE
2 CENTINUE
F(3,1) = BR(3,1)
F(S,z) =BR(5p1)
D¢ 3K =2,6
10 = 3K
11 =10 +1
I2 = J0 + 2
F(10,1)= BR(I0,1)
F(I1,3)= BR(I1,1)
F(I2,2)= BR(I2,1)
3 CENTINUE
F(9,3) = BR(9,2)
r(i175)= Br(11,2)
DF L K = U,6
10 = 3K
Il =10 + 1
12 =10 + 2
D 5J =2,3
Jo = T = 2
Ji = J0 + 2
Je =J0 +1
F(10,J0) = BR(IO0,J)
F(I1,51) = BR(I1,J)
F(12,32) = BR(1I2,J)
5 CENTINUE
L CONTINUE

As an 1llustration of the usefulness of the results given in the
relations which have been labeled Eq. (2=75) and Eq. (2-76), let
us consider Eq. (2-72) in further detall. We can show that the
function V,(g,») is an entire function of £ which can be expanded

in a Taylor series of the form

= exp(izt’) = &
Vo) = N D= = ) e
g=1 (wi (1)) =0 nl

Let us now observe that

2=81

LOCKHEED MISSILES & SPACE COMPANY
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Q" V., (g,o) (17°)Texp (1£17)
. = W 2 S S Z
g [wg (<2)1° - n-r)l an+r

dg s=1 n=r

Therefore, we can express a function of the form

exp(igm )
F(g) = 2/Ix c, * 01T 02(T ) e e ok c, (T ) ]'-——-——-—§
s=1 [wl & )]
in terms of the function V,(&,») according to the rule
(&) [ ° ——-gdz al ] (g5)
F(g) = |c, + ¢ +c + oeeet c —— 7 )
° " ltage) 2 a) mogig)™] @ g2

If we now use this rule in the representation which results from
using Eqe (2=76) in Eqe (2-74), we find that Eqs (2=72) leads to

V,(0,q) = V,(0,m) + 2 %q-n (2-78)
n=

where

A, (-1)" o (2-79)

m=

The coefficients Fﬁ are those which were defined in Eqe (2=76) and
the coefficients ay are those defined by Eqe (2=77).

The form of the result in Eqe (2=79) provides an excellent example
of a situation which occurs frequently in numerical analysis,

Since we know a recursion foirrula which will permit us to compute
the quantities Bﬁ(m) = Fn(a)exp(i§nﬂ) without having to take re-
course to the representation in Eqe (2-76) it is tempting to dis-
miss this representation in the form of a polynomial in T as be=
ing "useless." However, we see in Eqe (2=79) that the coefficients
in the polynomial representation can play an important role in

analytical worke
2=85
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2.5 Programs for Step-by-Step Integration

In this discussion we want to present some methods by which one
can compute the root t(q) of

wi(t) = qw(t) =0 (2-80)
by integrating the differential equation

g .~ (2-81)

[ C——-

with the initial conditions

& = t(qo)

We can use the differential equation to compute

n
dq Jg=q,

and use these expressions in the Taylor series to obtain for t(q)
a representation of the form

t(q) = t, + 2 %(q - qo)n (2=82)
n=

The explicit form of the first few A, are

2=86
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2
_ % 4 9 1 1
As"%—l'_s'g 173 G 2
(to_q(?;) (to'q(2>> (to-qg) (to_qczx)
2 3
A4='§*1_7+%—q0—6'l§% i S i
(to - qﬁ) (to - qg) (to E qcz)) (t - q(2>)4
_ 1 " 9
Cle-d) -
oy
A=l 1 105 % - 3 q, i (g_isia 1
(-t ) s -qd) ) (s, - )
2
(%4‘%) o 5 o i’ s
(to - qo) (to -q(2>> s(to - qi)
2
Ag 'f_é : 11*1252 k: 10‘3{;;31 - 9
(to - qi) (to - qo) (to - qi)
B e (B
to~-q0 o ~ Yo
(B s (R R ) e
3 9 6
(to - q(?;) (to - q(2)> (to - qi)

Since t, and q, are complex quantities, the programming of these
coefficlents would be quite tediocus, However, we can develop a

much simpler method for the computation of the A, if we insert

Bge (2=82) in Eqe. (2-81) and obtain a recursion formula for the
coefficients,

2-87
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We observe that

%:’.1 = A+ 2 (n + 1), (q = q)"

n=1
and

t-q2=t-[q + (a-q)l°

t, = q§ + (A = 29°)(q - q) + (Ay - 1)(q - %)2

[ o)

+ 2 A (g = q)"
n=

The differential equation
2 dt
t - =1
( aq )aa
then leads to the relationships

1

(t, = qﬁ) (14)

(t, = q§)<zA2> + (A = 2q) (14y) =0

+

(ty = a2)(3Ry) + (& = 2q,) (2A5) + (A = 1)(1ay) = O

+

(ty = Q) (ay) + (A = 2q5) (3h3) + (A = 1)(245) + A5(1hy) =0

The general term in the series can be evaluated from the relation-
ship

(t, - 2 (na) = = [(a = 2q)(n-L)A 4 + (A = 1) (m=2)Ay o]

|

- (n - m)%A(n_m) (2-83)

i

2-88
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It would be rather straight foward to construct a computer program
to ovaluate the An' However, since the terms which appear in Fq.
(2=82) are of the form

B, = Ayla = q)" (2-814)
it would advantageous to have the program evaluate Bn directly
and to stop the summation when a sufficlent number of terms have
been summedes This is much better computer practice than to first
construct the An and then go back and sum the polynomial which
results when Eqe (2=82) is truncated.

Although it is wasteful of storage space in the computer, a sim-
plication 1s obtained in programming this set of relationships if
we define an auxiliary set of coefficients C, Py means of the

following statements

U= (q=q,)/(t, = a2 (2-85)
C; =By =29V (2-86a)
- 2
C, =B, =U (2-861)
C, =B, 5 n>3 (2-86c)

The recursion relationships then take the form

(t, - qg)(lBl) = 0 (2-89a)
(t, = a2)(2B,) = = CyBy (2-89D)
(t, = a5) (3B5) = - (20;B, + C,B)) (2-89¢)
or, in general
(t, = qs)(an) = - 2 (n-j)CJBn_j (2=894)
J:
2=89
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Program 2=l

SUBR@UTINE CMRTSM(QO,T0,Q,T,EPSI,CENVRG)
LAGICAL CENVRG
CPMPLEX QQ,Tgﬁq,T,B(SO),C(SO),U,F,TEST

Cmmmm=e=LBGICAL VARI

LE CPNVRG = FALSE. IF SUM ¢F LAST THREE

Cem=-=-=TERMS FAILS T¢ BE LESS THAN EPSI#CABS(T).

G¢NVRG = ¢TRUE,
F = 1,0/(T0 = QO*QO)
B(1) = WF
C(l) = B(1) = 2,0%QOH*U
T = T0 + B(1)
TEST = B(1)
B(2) = =(F/FLEAT(2))#*C(1)*B(1)
c(2) = B(2) = U#U
T =T + B(2)
TEST = TEST + B(2)
B(3) = =(FLEPAT(3))#*(2.0%C(1)*B(2) + C(2)%#B(1))
c(3) = B(3)
i =T 4+ B(3)
TEST = TEST + B(3)
DF 1 I=1L,50
B(I) = 060
INDEX =1 =1
DF 2 J = 1,INDEX
B(I) = B(I) + FLPAT(I=J)#C(J)*B(I=J)
2 CONTINUE
B(I) = - (F/FL@AT(I))#B(I)
c(I) = B(I)
T =T + B(I)
T.ST = TEST + B(I) = B(I=3)
TMAG = EPSI#CABS(T)
TESTMG = CABS (TEST)
IF(TESTMG4LT«TMAG) G T¢ 10
1 C@NTINUE
CENVRG = oFALSE,
10 RETURN
END

In Program 2=l we present a FORTRAN subroutine which will evalu=-
ate Eqe (2-=82) by employing the recursion relation given in Eq.
(2=-89)e The relation between the mathematical variables and the

FORTRAN variables are

t

%

= T0 ’ t ="
= Q0 ’ qQ=Q
2=90
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The user will have to supply the valuc of EPSI which 1s used to
control the exit from the D@-loope The author gencrally employed

FPSI = 1,0E=8
However, for some applications in which less accuracy 1is required
a smaller value of EPSI will cut down on the amount of work which
the computer is asked to performe The LEGICAL variable CONVRG is
employed to permit the user to know whcther the scriecs converged

when fewer than 50 terms werc summed. The criteron for convergence

to thc accuracy spccified by EPSI is besed upon whether the last
threc terms combine to nave an absolute valuc which iz less than
EPSI times the absolute valus of T,

When q  and q are very large, the reprcsentation in LEq. (2-82)
becomes quite uselcsse When this is the case, onc can rcplace
Eqe (2=82) with the alternative forn

5(q) = t_ + ‘B("l-'l)n (2=90

i(aq e S, nla g =90)
n=1

It will be convenient to define

X "'1 X =
— ’ —
(o] qo

e L

and observe that Eqe (2«81) takes the form

(1 = xzt)% = i (2-91)

Let us express Eqe (2-90) in the form

o0

t(x) = ¢ + 2; B (x - x )" (2=92)
n=

If we insert Eqe (2=92) in Eqe (2-91) we can show that the recur-
sion formula for the Bn is

2-91
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2 _ 2 -0
(1-x_t) (n+1)B 4 = S rB (B _.4 +2x B . +xB _.,) (2-93)
r=

The initial values are

B, =0 , B, =t, , B =

2 2.3
2toxo + xo 2toxo

2(1 - x§t0)3

2 2 3 _ 0025 L e ilib
2t + uxo + 2t X + 2toxg + (3 = 10to)xo 6t°xo + 6toxo

2«5
to(l - x_t,)

For q, = «, We have X, = 0. For this limiting case, the recursion
formula in Eqe (2-93) is identical with Eqe (2=52),

Since the terms which occur in Eqe (2=92) are of the form

= - n
Dh = Bn(x xo)

it would ve advantageous to program a recursion formula for the
Dn and compute only as many of the Dn as arc required to obtain
the dcsired accuracy for t(x)e Let us define

U = -
X xo

- 2
A1 = xoDl + 2x°Ut0

— 2,2

>
1]

2 :
xoD3 + 2xoUD2 + UZD1

and, in general

2
x,D, + 2x,UD ;1 + Uan_2 s N >3

g

2=92
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Wo can then oxpress Ege (2-93) in the form

(1 - xgto)(n+1)pn+1 = rD A (2-9l)

r n-r+l
r=
The introduction of the An has greatly simplified the appeurance
of the ocouation that dcfines the recursion process by which the
D are to be generateds Although the i.troduction of the A,
means tnat we must set up arrays in the computer rtorage for both

the D and the An,the price pald for the using of computcr storage

space Tor the An is more than compensated for in the saving of
the operations which would be rcpeated in each stcp of the re-
cursion if e were to program the foriu: in Ege (2-93).

In Program 2-5 we present a FORTRAN subroutine which pcrmits us
_to. evaluate the sum in Eqe (2-92). The FORTRAN variables are
related to the mathematical vueriables in the following manncer:

X, = X0 ’ x=X

t TC

. ; t =T

The quantity EPSI plays thec same rolc as the corresponding crite-
rion in Program 2-4. The wv:luc

EPSI = 1,0E=8

can be enployed in most appllications of the progran.

In Programs 2-6 and 2=7 we present double precision versions of
Programs 2=l and 2=5, respectively.

Program 2-6 provides the FORTRAN statements for

SUBRGUTINE REFTSM(QOR,Q0I,TOR,TOI,QR,0I, TR, TI,ZPSI,CHNVRG)

The I"ORTRAN variables in the argument list arc rclated to the

(Text continucs on pe 2=99)
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Program 2=5

SUBRGUTINE CMRTLG(X0,T9,X,T,EPSI,C#NVRG)

LYGICAL CONVRu

C#MPLEX X0,T0,X,T,U,U2,C2X0U,X02,F,D(50),A(50), TEST
C-=====L@GICAL VARIABLE CPNVRG = FALSE, IF SUM @F LAST THREE

C=====-TERMS FAILS T¢ BE LESS THAN wPSI*CABS(T).
CENVRG = oTRUE.
U X - X0
U2 WU
Cc2X0U 26 0X0*U
Xo02 X0*X0
F 1,0/1160 = X02%¥T0)
T TO
D(1) B4R
i T + D(1)
TEST D(1)
A() CBXOUH#TO + X02%D(1)
D(2) A(1)#D(1)#F/FLHAT(2)
by T + D(2)
TEST TEST + D(2)
A(2) TO*U2 + C2XOU#D(1) + X02*D(2)

s I T T A (T I T T { T IO T A1 IO

D(3) (2.0%A(1)#D(2) + A(2)#D(1))*F/FLPAT(3)
T T + D(3)
TEST TEST + D(3)
A(3) U2#D(1) + C2XOU#D(2) + X02#D(3)
DFL11I=1U,50
' INLEX I=-1

D(I) 0.0
DF 2 J = 1,INDEX
D(I) D(I) + FLPAT(I-J)*A(J)%*D(I-J)

2 CENTINU
D(I) = D(I)#F/FLEAT(I)
A(I) = U2#D(I-2) + C2XOUMD(I=-1) +X02%D(I)
T = T + D(I)
TEST = TEST + D(I) - D(I=3)
TMAG = EPSI#CABS(T)
TESTMG = CABS (TEST)
IF (TESTMG.LT.TMAG) G T¢ 10

1 CENTINUE
CANVRG = +FALSE,

10 RETURN
END

1 2=9L
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Program 2-6

goqien) —— Sty S s vt o

(2)I8 + 11531
(2)88 + ¥His3Il
(2)19 + I1
(2)He + Yl
INx»N*0QN°*2 - (2)16
INkIN + YNx¥N - (2)u8
(2)Lv04A/7((2)8I%14d + (Z2)1dxyd)-
(2Y1v01d4a/((2)12x1d = (Z2)HIx¥yd) -
(THUBx(TIID + (T)Iax(T)HD
(THYIg=(T)ID = (THINg*(TY¥D
(1T)I8
(THYuE
(T)TIg + 101
(T)YH48 + ¥HO01
(3N*I100 + INx¥0D)*000°2 - (T)IE
(INXI0D - ¥NxHO0D)*0Q00°2 - (1)
HaxIN + T4x¥N
Id4xIN = ¥4xY
(09%086 ~ 01) 40 IWI0udIDIIY uIH MH
14/11=-=
T4/41
I1xI1 + ¥ixHl
100x300%0C0°2 - 101
100%10D + HOP*YOD - N0

109 - IO
H0D - HD
ANyl

11531
H1S31

I1

¥l
(2)I2
(2)¥d
(2)I3
(2)yyd
(2)1D
(c)yd
11S31L
H1S31

11

Hi
(1)12
(1)¥2
(1)18
(7)43

14
¥4
14
Il
¥l
In
an
9UANCD

((M)LVOT4)3T180 = (M) 1vodC

OWLS3L1¢1S3L 6115314153
.H;.m:.ﬁomvmu..om,mu..om,Hm..om,am.»momo.»<04womhmowm“wmmu
ISA3¢11¢81¢10+80¢I0LeN0LIT00+H0O NOISIISHd

JENCQ
378N0a

OuANO 9
.om>zou.ﬁmau.Hp.m».He.mo.uOh.mcp.Hoo.moc,zmhoon uwmumwmwmm

(I4e¥d4)=====)

g
v
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N¥N13Y 07
*3Svd4° = 9¥ANOD
3NNIINOD T
0T 0L 09 (9WlS31°11°1S31)41
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(2*«I1S3L + 2»»¥L1SILILNOSA =  1S3L g
(€=I)I9 - (I)I8 + I1S31 = 1453l o
(E~-I)¥8 - (I)¥8 + ¥1S3L = ¥HIS3L w
) (1)189 + 11 = Il O
» (I)¥8 + ¥l = ¥l w
g (I)Is = (IID 0
o (I)¥8 =  (I1)¥d g
e (I)Lv04aQ/ ( (I HI=Id + (I)IDd*yd)-= (I)1I8 I
N (I)IVOT40/((I)IJ%14 = (I)¥Ixyd)== (I)¥E O &
o~ INNIANOD 2 ¢ "
5 ((P=I)HE(M)ID + (MP=1)I8x(M)Y)*(MF=1)LVO04C + (IH)ID = (I)ID N w
< ((P=I)IBx(P)ID = (P=D1)YGx(MIUD) % (M=T)LV0140 + (IH¥D = (I)¥D J
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(CHue + ¥l = yl ~
(€)19 = ()12
(€)¥9 = (§)¥d
(€)LV0I3Q/ ((SIUI=xId + () Idxyd)== (£)I8
(€)1V0T40/ ((S) 12214 - (£)¥I*yd)== (£)Y8
(THHE=(2C)1ID + v
(T)IB%(SHHD + ((2HUO*(TIID + (2)I64(THHI)*((2)1V0I40) = (€)ID
(T)I8x(2)1) - v
(TH)UBR(2HYD + ((2)IB*(TIID = (2)UB=(THIYI)%((2)LV040) = (€I YD
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(2)¥0 + ¥1S3L1 = HIS3L

()10 + Il = Il

(2)40 + M1 = =3 §

YIx(2)IV + T4x(2)dv = (2)IC
Id%(2)IV = H4x(2)HY = (2)¥1]

(2)AVOI4A/ ((THHUA*(TIIV + (T)TIA*x(T)HY)= (2)1V
(2)LY013A/7 ((THIGx(TIIV = (THIMHOx(THNHY)= (2)YVY

(T)HA%I20X + (T)IQ*HY20X + HOL*IOXSN + IO0L*UOXSN = (T)IV
(T)IG*I20X - (T)¥UxUY20X + I0L*IOXSN = HOL*YOXSN = (T)HHV

(110 = 11531

(T)¥0 = ¥j1S3L

(1)I1I0 + 11 = Il

(T)¥0 + Y1 = ¥l

d4xIN + Idx¥N = (1)1C2

~ I4xIN = ¥dx¥N = (T)¥3
) 101 = Il
L - 4oL = Ml
5 OVW1/11S31-= 134
o 9YW1/¥1S31 = S
w0 I1S3L1*I1S31 + ¥YI1S3I1*¥IS3L = OVWL
o YOL*I20X = T0Lx¥20X - = I1S31
A I0LxI20X + HOL#¥20X - 000°T = ¥i1S3L
I0X*40X*000°2 = 120X

I0X*I0X - ¥OX*H¥OX = 20X

(HOXxIN + I0X*¥N)*000°*°2 = 10XeN

(IOX%IN = HOX*UN)*0Q0°Z = HOX2N

INx¥N*000°2 = Iz2n

INxIN = ¥NxdN = yen

10X - IX = In

¥OX - ¥X = N

*3NyLl* = 9YANOD
((X)Lv014)318a = (M) 1lvo4a
ISd31¢1S3}14140S0¢
I0XeN+yoxeNIded4¢120x¢¥SOoXI2NUSN*IN+¥N¢ 1VO40Q
$I1S3L0YLSILOVIWL (0S) IV (0S)YUY(0S)I0(0S5)NC NOISIOId4 318n0J
ISd3¢T1¢¥1¢IXeuX*I0LeHOLIOXHOX NOISII3IH4 3INENOAD
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Program 2-7 (Cont+d)

g 2 - -
aN3
N¥Nnl3y 0T
*3JST\yde = 9YANOD
INNILNOD T
(2=-1)¥a=*x1I2n + (2=-1)Ila=xy2N+ v
(T=I)¥0%I0X2N + (T=-1)I0*x40X2N + (I)HA*I20X + (1)I0x¥20X = (1)1V
(2=-1)1ax12n - (2-1)HO*y2N+ v
(T=I)IAxJI0X2N = (T=-I)dA»x40X2N + (I)IG*I20X - (I)HAxY20X = (I)¥V

0T OL 09 (ISd31°17°4S31)4d1

(SxxI11S31 + xx41S21)1H0SO = 1S31 ~
(ISd3)SAVAx(2*xI1 + 2*x41)1¥0SC = 1Sd3l z
(€=I)I0 « (I)IQ + I1S31 = 1I1S3L =
(E=1)¥0 = (I)¥0 + ¥YIS3L = ¥MHIS3L s
(1)10 + I1 = 11 0
(I)¥3 + M1 = ¥l v
(I)LvOdQ/ (¥4=(I)IV + Id4x(I)NHVY) = (I)IQ u
(I)LVO4Q/(I4*%(I)IV = Hdx(I)uV) = (I)¥A0 < i
INNILNOD 2 3 £
((P=D1)UA% (M) IV + (P=I)Iqx(MF)Y¥V)*(FP=T)L1V0I40 + (I)IV = (I)IV © i
((P=I)IA% (M) IV = (FP=I)UAx(M)UY)x(M"=T1)1VO0130 + (I)dV = (I)¥V ¢ < m
X3ONI*T = r 2 03 N ¢ 8
000°0 = (I)IVY J §
000°9 = (I)¥V ) K
T-1 = v30ONI 0
0G6*h =1 T 010 s
(¢)Ia + I1s31 = 11S31 o
(€)HA + ¥IS3L = ¥IS31 u
()10 + I1 = 11 I
(c)yl + ¥1 = ui Y
Ydx(C)IV + Id4*(CH)dv = (€)1d m
Idx(€)IV - Hd*(C)HVY = (g)ua by
(€)LVO4Q/((THYHAx(S) IV + v
(T)IA=x(2)XUY + ((2)¥0x(THIV + (S)IA*(T)¥V)I*(2)LY0140) = (€)1IV
(€)1V04a/((T)I10x(2)1Y - v -
(T)HOx(2)¥VY + ((2HICx(T)IV = (2)HA*(T)UY)=(2)LV0I4T) = (C)¥V
(2)¥a*120Y - (2)I0%420X + v
(T)HO*I0X2N + (T)IQ*¥OXSN + HOL*I2N + IO0L=¥Y2N = (2)1V
(2)10*120X - (2)¥0xY20X + v
(T)IA*10XeNn - (T)YA=*H0X2N + I0L*I2N - YOL=xy2N = (2)YY
(2)I0 + Iis3L = 11S31
[»Y
N 3 ~dss om Ottt g & S A L
P ..l & et Mg e A= S e




mathematical varlables in the following manner:

QOR + 1QOI , q = OR + iQI

(o]
i

TOR + iTOI TR + iTI

0 2 t

ct
"

The value to be assigned to EPSI will depend upon the accuracy
which the user wishes to obtain. C@NVRG is a logical variable
which tells whether or not the series converged to the desired
accuracy by the time it has summed 50 terms. The user will have

to supply the non-executable statements

LEGICAL CE@NVRG
DPUBLE PRECISI@N QOR,Q0I,TOR,TOI,QR,QI,TR,TI,EPSI

in the calling program.
The statements in Program 2=7 constitute the subroutine entitled

SUBRPUTINE RE@TLG (XOR,X0I,TOR, TOI,XR,XI,TR,TI,EPSI,CENVRG)
The calling program will have to contaln the statements

LPGICAL CENVRG
DFUBLE PRECISI@N XOR,X0I,TOR,TOI,XR,XI,TR,TI,EPSI

The FORTRAN variables are related to the mathematical variables in
the following manner:

XOR + 1X0I ’ x = XR + iXI

%o

TR + iTI

ot
1}

TOR + 1TOI

to ’

Programs 2-6 and 2=7 were employed to generate the tables which
are presented in Appendix D. In Program 2-8 we present a sub-
routine which we employed to generate tables such as the one in
Table D=la, The values in Table D-la were obtained with a CALL
statement of the form

CALL PR@PSM(1,018'71929 (16l (471D0,L5.0DO, 0+ 05D0, 1, TR, T1)
The reader will recognize the first argument to be the root By

2=99
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defined by AL’ (=p,) = O. ‘}

It should be noted that Programs (2=} through (2-=T7) can be used
for step~by=step integration of the Riccatl equation (t-qz)%g =1
and that the calculations made in this manner (by employing a
program such as in Program 2=8) do not have the boundaries of
regions of applicability such as illustrated in Fig. 2=3.

Program 2=8

SUBROUTINE PROPSM(T,ARG+*QSTEP/N¢TR,TI1)

LOGICAL CONVRG .
DOUBLE PRECISION TrARG!QSTEP»TR(N)»TI(N)

OOUBLE PRECISION PI0180,C0S60+SIN60+DFLOAT»QORQOIVEPSIY

A RAD»TGRsTOI»QR»QI» TREAL» TIMAG » DCOS»DSIN

DATA PI10180+,COS60+,SIN60/0.17453292519943 D=1+ 0.5D0,

A 0.8660254037844386500 /
OFLOAT(K) = OBLE(FLOAT(K))
TR(1) = TxC0S60
TI(1) = T*SIN6O
QOR = 0,000
QoI = 0.0D0
EPSI = 1,0D0-17
RAD = PJ0180*ARG
DO L I = 2N
INDEX = I
TOR = TR(I=1)
Tol = TI(I=-1)
QI = QSTEP*DFLOAT(I-1)
QR = QI*DCOS(RAD)
Ql = QI*DSIN(RAD)
CALL ROOTSM(QOR,Q0I,TOR,TOI,»QR+QI+»TREAL» TIMAG+EPSI+»CONVRG)
TR(I) = TREAL
TI(I) = TIMAG
QOR = QR
QoI = al
IF(+NOT,CONVRG) GO TO 2
1 CONTINUE
RETURN 1

2 WRITE(6+150) INDEX»T+ARG»QSTEP
D0 9 I = INDEX'N

TR(I) = 0,009
T = 04000 | )
9 CONTINUE

RETURN

150 FORMAT(46H0 SUBROUTINE PROPSM COULD NOT HANDLE INDEX = rI4/
AEIéH WITH T = /D22,16+8H ARG = +D22.16+/10H QSTEP = »D22,.16)
N
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Section 3
EXPANSIONS IN THi LIGHTED RuGION OF A C1IRCULAR CYLINDLR

Considcr the problem which arises when one wants to compute the
field in the lighted region when the plane wave exp(=ikx = iwt)
illuminates a perfectly conducting cylinder of radius a. If the
radius of the cylinder 1s much greater than the wavelength, and
if the field is observed for points outside the shadow region,
the field can be described by the optical approximations

u(p,9) - exp(-ikx -iat) 2 _92_ oxp [ik(n - 2 €08 a) -Iut] (3=1)
20 +0 cos a
where the + sign is used when the magnetic vector is parallel
to the axis of the cylinder and U(p,¢) represents the magnetic
field (thc so-called Neuman problem since the derivative of the
wave function must vanish at the surface) and the = sign is used
when the electric vector is parallel to the axis of the cylinder
and U(p,¢) represents the electric field (the sc-called Dirichlet
problem since the wave function must vanish at the surface). The
geometry is illustrated in Fig. 3-1. The angle a is the angle of
)

X

Reflected wave

-
Incident wave

ot |

|
Fige 3=1 Geomctry of the Reflection Problem
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incidence of the wave at the point of reflection, and the distance
D is the distance of the observation point (p,¢) from the point of
reflectiun.

In the following discussion we will present several extensions of
the optical approximation which are based upon the diffraction
function

v'(t) - e ¥(t)

"'(t) -q "(t) "(t ) ;)l dt (3"'2)

"(60;0.) = W' f .‘.(|€t) ['(t . ‘) =

which has been employed by Fock (Ref. 1), Belkina and Vainshtein
(Ref. 2), Azriliant and Belkina (Ref. 3), Fedecrov (Ref. L), Wait
(Ref. 5), Goodrich (Ref. 6), Logan and Yee (Ref. 7), and many
other authors. Fock showed that for v - £ > 0 that V,(&,4,q) can
be expressed in the form

£
neLo=m ifg-5)  + ML e
‘(1) - g w(t
Ps.0) = - . f“'"f" LR w(t - Dat
VY S "' (1) - g ny(H (3=,

and that P(£,%Z,q) can be shown to have the asymptotic property

- P 1
P(EL, —_— - - — - 3092
(€,0,9) > |+I'\/: oxp llz (o> + %2p - 0P +3|!3)] (3=5)

where

s [VEE-x] L ee v (3-6)

Let us express P(&,%,q) in tue form of a product of a slowly vary-
ing complex amplitude and thc phase factor given appearing in Eqe (3-5).
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PELD =MD 0) 01 [ (0 + 3% - 3002 + 3 |

12 (3=7)
Since Fock has shown that P(&,Z,q) is a solution of
72 ar
—_—r j—+P=0 (3-8
a2 P=d
we can show that A(p,0,q) is a solution of
1 2 9 A 3 A 3 3_‘_,,(2',_._9_.)31 Laso
T a2 o % o (39)
oo # &2 202 309D »

In order to sec how A(p,q,q) can be used to describe the reflected
wave from the circular cylinder, we can start from a form of the
Laplace operator which was used by Keller, Lewis, and Seckler (Ref.
8) to study a slightly different aspect of this problem. The

form which we need is

2 2 2

V2= ],+u 8+l__w_u i_ZVa 1..Aa v..a_-
6 /s Ml S il Sty dev s B T
where
s=D+-;—'cosa B=1-2a
and
0= azcoszﬁ/z -3 3
18 V—-TlOOIﬁ/z w--s-aslnﬂ/z

If we make a change of scale from a to ¢ and from sin(p/2) to p

o (8) mus oea() s (1)
the wave cquation takes the form
(oo [(2) L+ ()L, (49) 1y o (3-12)

where Lo is the differential operator
3=3
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L =—%- 2 G =y ——--%—-a—+(81- )——+-—- (3=13)
° ¢ ;;z- .;r op ?T 8cbp o 98p )

o do o

and L; and L2 are similar differential operators which involve
only ¢ and pe. If we assume that &(p,p) can be expressed in the
form of an asymptotic series

#(p,0) =(Z§n(p,o) (ka/2)-§n) exp(ik(D - a cos a)] (3='U)

n=0

we then find that

Locbo =0
so that ® satisfies the same partial differcntial equation as
does A(p,0,q)e An examination of the boundary conditions reveals
that we can identify $0 with the slowly=-varying function A(p,q,q).

éo(p,o) = A(p,0,q) (3=15)
Therefore, we can express U(p,¢) in thc form
u(p,9) - 0xp(-ika -iet) + A(p,0,0) 0XP ["l('-l cos o) ""] (3-16)

provided the higher-order terms in (l«:e./z)“i are neglectable.

Since
eip P _ q-ip 2 c08 a
e.o.0) i= Vo atip Y20+ cosa (3-17)

p>>1 &tp

we can express the approxim:tion for the casc when the magnectic
vector is parallel to the axis of the cylinder in the form

Nz(p. @) ~ oxp(-ikz -iut) + Kp,0,0) 0XP [ik(l-a s a) -l-t] (3-18)

and the case when *he clectric vector is parallel to the axis
in the form

Eyx(p,9) ~ oxp(-ikx -int) + Kp ,o0,x) oxp [_ll(l-a ces qa) - z] &5 )
-19

3=l
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If we assume that A(p,o0,q) possesses an asymptotic expansion of
the f'orm

- A(pq)
A 0, q)= \/72

n=0 (3=20)

then the differential equation Eq. (3-9) leads to the recursion
formulae
2

n = 1 '1 d‘An 1 dA 1 A
] q x - & — —_ -
n+l 2(n+]) LT dpz 4 dp 16 p2 ]

[3 dAh-l

3
- -zn—F +zin-A_1]

+ L% +§- -2 (o+1) An_a] (3-21)

for which tiie initial conditions are
Ay(psa) = V2B Vyy(=2p,q) exp(-i§p’), A, =0, m< 0  (3-22)

Logan (Ref. 9) has shown that Vll(g,o) and V,, (g,0) can be expand-
ed in asymptotic series of the form

¥, ,(€,0)0—> -‘Egom yor
11€6.0) 1 & 512 gls } (3=23)

(|e3)|mi_g_ls96 o 2152
§9 - 2

2 2 560 25520 llét.‘lﬁ!)

lel =t b | — -

o> Fm (1€
"1cEs )E‘;—_: ""(' ) 3 e O 2 gls i [T

2 12

In Tables 3=1 and 3-2 we list some of the leading terms in these
asymptotic expansionse The author has tables which contain further
terms in these series, but until appropriate summation techniques

for summing these types of expansions can be found thei: usefulness
is limited.
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LEADING TERMS IN THE ASYMPTOTIC EXPANSION OF An(p,O)

Ay(p.0) =

Al(.lo) =

lz(.oO) =

la(plo) =

‘4(’-0) =

Ag(p.0) =

Ag(P,0) =

M(p,0) =

‘a(’oo) =

I(0,0) =

1
-]l ¢+ -
4

15
32

Table 3-1

1 1 1
-_—  — —_—
p3 16 pé
., s L
p2 128 8
1
as e HsT S
’ 2048 p4
1, s 1
p? si12 93
105 1
102¢ 92

315 1

512 P

465 1
+ —_ —

2048 p°

3=6

+1i

+i

7
4

1001

512

10857

8192

63525

———

65536

28665

——

32768

45675

65536

3465

—

16384

45045

65536

135135

—

32768

765765
65536
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Table 3=2
LEADING TERMS IN THE ASYMPTOTIC EXPANSION OF A_(p,e)

Ay(p, ) = 1 +I1. l. + Ei _L -1 33 .L + ...
s 93 16 pé 32 p®
Ai(p,) = +i ..l.. _l + _3_5. ._l_ -l ..”_5. _l. +
32 p2 128 pd 512 p8
ho(p,) = +i i l + _‘9_5. .l_ . | 9112 .l_ + ...
16 2048  p4 8192 p?
A3(p ,0) = - 1_5_ i. + 15_ _l. - .6..0_32 .l_ SR
32 p9 512 p3 65536  pS
{ Ay(P) = L T
102¢ p? 32168  pd
A(p.) = s 35V k1
512 p 65536  p*
Ag(p,) = o) 285l e R
2048 p° 16384  p3
‘ 1(p,) = R LI
‘ 65536  p2
A8(p, ) = FISSIoo Il
’ 32768
by (p,0) = +i 122122 U + ...
65536  p°
e 3-7

LOCKHEED MISSILES & SPACE COMPANY

e B e



Our present state of knowledge of the type of series which are

displayed in Tables 3-1 and 3=2 is so limited that we do not know

how to "sum" the series when p - 0. This type of expansion can .

only be used when p is very large and positive, which corresponds

to the physical situation of being well above the horizon in the

lighted region, and the radius of curvature of the cylinder being

very large in comparison with the wavelength. The author has had e
some limited success with obtaining numerical results from these

series by employing a special form of the Euler transformation,

namely,
S = a5 * a4x + a2x2 + 93x3+ vee
= (1 - x)-1 ( a, 4—}22 [x/(1 - x)]k Akao) (3-25)
k=1
where

Aao =aq = ao
A2
A 8y = Aa1 Aao

60000 000

Since the scories are characterized by the appearance of factors
such as signs +, i, -1, -i, etec, the author has found it most
useful to let exp(in/2) be a factor of the variable x which ap-
pears in Eqe (3-25). Although the author has been able to use
methods of this type to extrapolate values from the asymptotic
series to much smaller value than can be obtained by a straight-
foward use of the asymptotic series, the method does not appear
useful enough at the present state of its development to warrant

a further discussion at this time.

In order to obtain practical results for smaller values of p, it
is much simpler to reconsider Eq. (3-22) and to realize that thec
function Vy4(=2p,q) offers a means of obtaining approximate values
of A(p,g,q) provided o is very larges Since Vy4(=2p,q) can be

3-8
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numerically integrated by cmploying an integral representation
such as that in Eqe (1-50), a morc attractive approach to the
computation of A(pyag,q) would appear to be to use Eqe (3-21) to
find the An(p,q) by means of numerical integration 4 Work along
these lines has been begun by the author but the progrcss to date
has beon too limited to be able to report at this time upon the
usefulness of this method. Furthermore, since Eq. (3-20) is an
asmptotic series in inverse powers of g, the usefulhess of this
representation (for small values of p) may be so limited that
these studies may be more "academic" than "practical."

However, there are some very practical aspects of Eq. (3=16)

which should be discussed at this point. When Eqe (3=22) is
inserted into Eq. (3=20) and Eqes (3=16), there remains the limita=
tion that p must be positive. It is relatively easy to eliminate
this restriction and obtain a representation which holds down to
p =0 (i.e., on the horizon) and even to points slightly below the
horizon. In ordcr to achieve this result, we need to return to
Eqe (3-7) in which the function A(p,c,q) was defined in terms of
the function P(&,Z,q). From Eq. (3-6), we find that the inverse
relations are

2t =g - 3p , Y = 02 + 20p = 3p2 (3=26)

We can then show that for large positive values of g,
2 2 1 2 2 2
3 KB/ -—’]:;103 + 30°p - 30p + 3P3) ey P3 (3=27)

We now want to use an asymptotic property of Lg. (3-=2) in order to
show that in the vicinity of the "horizon" (dcfined as & - VZ = 0)
that one can obtain an extension of Eq. (3=106) which shows that
the field in this rcgion is very closely reloatcd to the classical
Fresnel integral represcentation for the field behind an opaque
screcens The asymptotic formulae which contain this result are

3=9
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described by the relations

vV, (£,%,0) = exp[i(gy = 3£ )]—;—— F(z) [-pK(=T) + V,(x,a)] (3-28)
£<0

Vl(gsz;:Q) — P31 pK(t) + Vz(xsqn (3=29)
L + .
E>0
where the parameters y, X, and 1 are defined by
i
k":Z;/LL’x:g"\/Z y T T BX
anéd F(z) denotes the factor
-1
Pig) = (274 oxp(1823/2)
and K(t) denotcs a special form of the familiar Fresnel integials

i 5
K(t) = exp[-i(q:2 + n/lL)) ———:/“exp(isé)ds(3'30)
VI

which has the properties

1
K{0) = —
2
X () . _exp(in/lt)
.. s

The tunction Vz(x,q) has alrcady been dcfincd by Ege (1=51) in
which it 1s related to a function V,,(x,q) which was dcfined in
Eqe (1=50)s From these former results we see that we can expross

V,(x,q) in the form R
- ex xp(i
a9 _pé"ﬁ f ) T T S (373

However, this is not a convenient form for numeirical evaluation
since the portion taken along the negative t-axis gives rise to
a singular function of x which is exactly cancelled off by the
factor involving tho reciprocal of x. Since V2(x,q) is actually

3-10
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an entire function of x, it can actually be developed in a Taylor
series about x = 0 if one starts from a proper rcpresentation. One
of the most convenient reprcsentations for use with numerical in-
tegration techniques is obtained by making use of the property of
the Airy functions which assert that

wl(texp(ign)) exp(i%m)wz(t)
1

v (texp(iZm)) — exp(=in/6)w, (t)
2

where, for the sake of the present discussion, we can assume that
t is real and positivee. These properties permit us to deform the
section of the contour in Eq. (3-31) that runs from == to 0 to a
contour that runs from wexp(i%u) to 0 and arrive at the represen=-
tation

exp (in/l) a v/ (t) - qv(t)
V2(x,q) S o — exp(ixt) dt
\ﬁ{ Wl'(t) - QW4 (t)
)
an 3-32)
/ (V3 +1) v (t) - g¥v(t)
+ exp(=-iim) exp(=xt ] dt
2 w,y” (£) = a#w,(t)

0
where
q* = q exp(ifn)

and wl(t) and w2(t) are related to the real-valued functions
(i.es, recal=valued when t is real) u(t) and v(t) by means of the
relations

wl(t) = u(t) + i v(t)
wz(t) = u(t) = 1 v(t)

Let us now collect some of the properties of Eqe (3-16) which
can be deduced from the results which we have been discussinge.

3a11
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We observe that for points "high'" above the horizon (i.e., for
p > 0 and g - ») that Eqe (3-22) leads to

Ulp,p) = exp(=-ikx = iwt) =
Ve/o V11(-ZP,q)expt'-i%pB)oxp[ik(D - a cos a) = iwt]  (3=33)

If we then let p » », we arrive at the asymptotic approximztion
i» J , g
Wp,9) - SXB(-ikx -lot) - — Yoo [.lk(l-a cos ) -wt] (3-34)
qHp c

which is the extension to the impedance boundary condition

oU

35 = 1ikZU, for p = a

q = -i(ka/2)%z
of the sp.cial problems which werc expressed in Eqe (3-1) since

the introduction of the d.ilinitions of p and ¢ change the appcar-
ancc of (3-3L) to the following form

$pse) - O(<IRE —iut) - 2 .‘/ " o [ik(ba cas o det] 3735
q+ip 20 + a CO8 &

However, the analytical "tools" which we have dcvclopcd by the
introduction of the functions V,,(x,q) and V,(x,q) permit us to
use either Eqe (3-28) or Eqe (3=29) to arrivc at a result which
holds on the horizon, i.e., for p = 0, for the case when g - .

This result is of the form

1/3
Ulp,o) F:l-;—*(—?—) \/rzﬁ- Vz(O.q)] exp(=ikx - iwt) (3=36)

The extensions to the optical results which were made in tne paper =
by Keller, Lewis, and Scckler (Ref. 8) belong to the class of
results of which the expansions in Tables 3=1 and 3=2 are oxamples.

However, these representations (which are effectively in inverse -
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integral powers of (ka) become useless for p - O« These new re-
sults have the considorable advantage of being useful for p -» 0
as well as p + o,

The rcsults which we have obtained provide us with an inter-
esting means of obtaining the fields at the surface of the cylin-
der. If we consider the meanings of p and g, we see that the
fields on the surface of the cylinder are obtained by letting
o + pe From Eqe (3-16) we see that

U(a,9) = [1 + A(p,p,q)] exp(-ikacos ¢ = iwt)

Vv, (-p,q) exp[-i%p3 ~-ikacos ¢ = iwt] (3=37)

where V, (2,q) (which was already introduced in Eq. (1-31) is
defined by means of either a Fourier integral

1
witt) - qw, (t)

v,z = = _.,,f explizt) at (3=38)

or a residue series

= exp(izt) . =z exp(izt )
V,(z.q) = izﬁrz 5 8 —q2vr lE —t-—“— (3=39)
t, - qIw, ) d 8
s=1 '8 1Vs s=1 (1 -—2-)w'1(ts)
q

where the roots ts are solutions of the transcendental equation
wl'(ts) - qwl(ts) =0 .

Let us employ these results for the casc of the electromagnetic
scattering problems vhich we considered in Egse (3-18) and (3-19).
When the magnetic field of the incident plane wave is parallel to
the axis of the cylinder, we obtain the magnctic field at the sur-
face of the cylinder by considering the case g - p. For this case
we obtain

3-13
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Hy(s,0) - [l + l(m.o)] oxp(-iks cos ¢ -iet)

(3-40)
= -P) o [-Ih ces ¢ - lot]

where G(=p) is the current distribution function

&(-p) = uxn - -3 f np(-lpt) (3-41)

ny(t)

which has the asymptotic property that as p - o

G(=p) =2 [1-1i ._‘i.-l-lﬁ_‘+5°°5 L U e
> pb 64 ° 64 pl2 102¢ !5

Since the tangential component of the electric field vanishecs on
the surface of the cylinder, we observe that V,(-p, 0, ») =0
and hence Eqe (3-3) will not directly give us the field distribu-
tion upon the cylinder., However, if we use thc Maxwell equation

[u i,

- b =2 —=——

« * akp)

we find that Eqe (3-19) leads to

VL) e 2] e

(3=43)
2\1/3
= I(—) F(-p) oxp(-ika cos ¢ -iat)
ka
where F(=p) is the current distribution function
3 Fexp(-ipt
R = -l _'_f”( "™ a
3 VW J
which has the asymptotic property that as p - «
1 o nA(p9
F(-p) = =129 ¢ — - Z 2o
A+l
"= P
i 1 1151 35 1 318175 | (3=lk)
2 ittt e et — — ¢,
@@ 25 e« 1692 ou e
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The expansions in inverse integral powers of p which have been
given in Tables 3-1 and 3=2, as well as the expansions for G(=p)
and F(=-p) which have been given in Egs. (3-42) and (3=ll), re-
spectively, become useless when p tends to zero. The physical

interpretation of p in terms of the cosine of the angle of in-
cidence reveals that all the expansions of this type become use=-

less for grazing incidence. However, we must bear in mind that
even in some cases where the expansions in inverse powecrs of p
appear to be useful, the terms of order (ka/2)-% which we have
neglected in Eqe (3-1l4) may become importante. We have shown that by

means of the functions such as Vz(x,q) and Vl(x,q) that the re-
striction to non-grazing angles of incidence can be readily re-
laxed by evaluating these integrals by numerical means. However,

it is very difficult to relax the restrictions to large values of
ka and much research is need in this direction. It is interesting

to observe that the above results reveal that for p tending to

zero, lees, for grazing incidence, it is no longer satisfactory

to decompose the fields into the unperturbed field and the reflected
fielde Since the obstacle tends to block off the incident field,

a Fresnel integral representation such as given in Eqse (3=28) and

(3=-29) becomes necessary. The author's experience with these
types of expansions had led him to conjecture that one cannot
expect to be able to analytically continue the expansions in
inverse powers of (ka) from the lighted region into the shadow
region. However, in Section 2 the suthor has discussed an ex-
ample in which it is shown how one can start with the residue
series which is valid in the shadow region and analytically ex~
tend these series into the lighted region provided one intro-
duces the diffraction functions as analytical "tools" to be em-
ployed to cross the horizon. The situation that exists in the
vicinity of the horizon appears to be be a type of "Stokes
phenomenon.”" Two types of series are required in the lighted
region (namely, the incident and the reflccted waves), whereas

3=15
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in the shadow region onc works with the total fiecld. It is

the experience of thec present nuthor that the "conneoction for=-
mulae" can be found when one wishes to pass from the shadow
region into the lighted region, but that the connection formulae
for the reverse direction present a much higher order of diffi-
culty. Since we are actually working with a partial differential
equation (the wave equation) the phenomenon to which we refer is
actually a generalization of the "Stokes phenomenon" since the
latter has arisen as a topic in the discussion of the asymptotic
solution of ordinary differential equations.

In the course of studying these expansions in inverse integral
power of (ka), the author has extended the computations of Keller,
Lewis, and Seckler (Ref. 8) so as to obtain further terms in the
asymptotic expansions. In fact, some of the further terms in the
series employed by Keller and his associates are identical with
the torms which have been displayed in Tables 3=1 and 3-2. The
additional torms which have becen evaluated are, at thc moment,
more or less of purely academic interest. However, if means of
"summing" thcse asymptotic series can be discovered, then tue
additional terms may prove to be of considerable interest. There-
fore, the author is taking the opportunity presented by the occa-
sion of preparing this report to include thesc tables, The tables
were generated on the IBM 7090 by employing a FORTRAN II program
which was augmented by the use of the NPREC subroutines which the
author has discussed in the Prefaces. In order to m-ko it easier
for the reader to utilize these results, we will introducc the
notation which appears in Ref. 8, In Fig. 3=2 we rceproduce the
illustratiorn (Fig. 10) of Ref. 8 which provides tho gcometric
meanings for thc symbols which arec employed.

A plane wave exp(ikx) is incident from thc left on a circular
cylinder whose equation is

x = - b_cos ¢ = - b sin /2 , § = b sin ¢ = b cos :/2 .
3-16
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(-b,,0) X
Fige 3=2 The Geometryy as Defined by Keller, Lewis,
and Seckler (Ref. 8)

These authors use the scalar wave equation

2

(v° + k2)U(X,y) =0

to determine a recursion relation to permit them to determine
the Vn(x,y) which occur in the expransion

<« V., \x,¥)
U(x,y) ~ exp[ik\{/(X,Y)lz a7
n-o (ix)™

where y(x,y) is the phase function which satisfies the eiconal
equation of geometrical optics

(w)2 =1,

These authors found it convenient to employ a set of coordinates
(s,B), where s is the iJ:otance measured along a ray from the
caustic, and B is the angle between a ray and the positive x-axis.

3=17
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The origin of s is not shown in the figure., The caustic is a
dic tance
s, = (b0/2) cos @ = (b /2) sin (p/2)

measured back along the dashed line which is the extension to the
interior of the cylindcr of the reflected ray (l.e., t.:e dashed
line which is used to define the angle ().

In their Eqe (200), thecse authors express the field in the form

U(x,y) = U (s,B) = exp(ikx) + D(s,R)F(s,p) (3=L5)

where

1 [ b, B 3 P
D(s,R) = —4] —sin - exp ik(s - —bosin —)2 (3=116)
2 28 2 2 2

and
: = J j=2¢t
F(s,p) = XQ é{;a ( B)“ (b p)
i1 £, ] = !y
L g 4 jtn 6b k sin . 23) (sin > (3=47)

Recursion relationships are given for the ajtn’ but we will rcfer
the reader to Ref. 8 if he wishes to examine the intricate nature
of these formulae, Our aim in this report is to prescnt to the
reader the explicit wvalues for the ajtn vhich we have obtained
for the cascs j = 0(1)6 for the boundary condition U = 0 (the
so-called Dirichlet problem) and the boundary condition al/av = 0
(the so-called Neuman problem). We have chosen to employ only
two subscripts, and hence we have made the definitions

Sjt = Byp 0 &)yt = By
8 4¢ = Byy aggy = Fiy
823t = Cyp s 8yt = Gyt
35 = Dyg s

3=18
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For the Dirichlet problem, the leading term (i.e., the coeffi-
cient which corresponds to that occuring in geometrical optics)
is

In Table 3=3 we give the coefficients BJt and Cjt for the Dirichlet

problem., Tables 3=l through 3=7 contain the other terms in the
series for this problem which have been evaluated.

Table 3=3
COEFFICIENTS Byy AND C it FOR THE DIRICHLAT PROBLEM
Byt Gt
% t
J o |13 0 1 2
0 =6 16 (0] 15 ~528 640
1 =6 2 ) -18 ~35 560
2 -18 | 12 2 -87 -1438 495
3 30 |-30 3 | -5k 60 300 |
I 9l | =-1260 210
H S | 3150 | =LllO 1260
| 6 |=3465 6930 -3465 J
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Table 3=L
COEFFICIENTS DJ ¢ FOR THE DIRICHL:T PROBLEM
" 0 1 2 3
0 -105 23112 ~902140 71680
1 -75 23985 -10824Y 91520
|2 ~5L0 18888 -81291 69960
3 ~3060 6780 621,15 60315
ik =25830 27720 -69615 60270
5 L3470 «3L650 -733% 55125
6 346500 -471240 79695 41580
7 |-180180 540540 -Lo5L05 L5045
8 |-9L59L5S 2162160 -1,,86485 270270
L 9 765765 -2297295 2297295 - 765765
Table 3=5
COEFFICIENTS Ey FOR THi DIRICHLET PROBLL:M
. .
N 0 1 2 3 N
0 1181.25 «120098L 105075840 -22124544 130662L0.0
1 2205.0 -1783299 17177688.0 -38025600 23152640.0
2 1822,5 =1338327 13367695.5 «30515976 18980160.0
3 -14895,0 -10776L5 11616765.0 -26670435 16605000.0
L -141,821.25 -1532265 10799617.5 =23531LL5 14665901.25
5 -1638630.0 92610 7833L20.0 -19866420 13229370.0
6 2671515.0 =3069990 5318775.0 ~18724860 12969495.0
7 37567530.0 «54144090 21,054030.0 =21351330 13243230.0
8 2331078.75 27297270 -22567545.0 -19729710 121,99987.5
9 | =-20LL59255.0 1487792305 =339999660.0 L59L5900 10720710.0
10 21824,302.5 -1891143955 32736L537.5 | -17459LL20 14549535.0
n 392837LL5.0 | -12658095L5 1440403965.0 | =-65L729075 87297210.0
12 -250979478. 75 1003917915 | =1505876872.5 1003917915 | =250979478.75
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Table 3=6a

FOR THE DIRICHLET PROBLEM

(Table is concluded on

3-21

COEFFICIENTS F it
0 1 2

0 -18191.25 720495%0,0 =1189662912,0
1 -53156,25 140589546, 15 -2493710-76,0
2 -33941.25 11587hk419.5 ~222L0L1; 54,5
3 =374CC.25 113075966.25 -21091 207 5
L -865856,25 112610925,0 -1878€12775.0
5 -9485201,25 54580128,75 -1559640285,0
6 <130756106,25 163009192.,5 =-1571646037,5
7 20,222768,75 -31114533,75 -1675876702,5
8 LL66718506,25 -6389723340,0 1162431270,0
9 2605747131.28 =363546933.75 -2986015030,0
10 | -36L35673023,75 91072814332,5 -69088L66947,5
11 | -24170415018.75 30892300188,75 1333L648827,5
12 | 132266185301,25 =45l 77u815495. 5491143099505 ¢
13 18823460906, 25 18823460906, 5 -175685635125,..
1 | -207C58069968.75 8656879201687, | =13929361070¢:.5
15 | 109176073256,25 | -5L5660366281.25 | 1091760732502..

the next page.)
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Table 3=6b
COEFFICIENTS th FOR THE DIRICHLET PROBLEM
t] '
i h| 3 ) L 5
0 L83TS67L88.0 ~69508B6528 ,0 3280076800,0
1 10577895126,0 -15687469056,0 7513088000,0
2 968656992L,0 1 =1511568LL16,0 | 739L503680.0
3 91279K1957.5 | -13695202920.0 . 6609996400.0
l 7930033650,0 | -1179983L716,25 |,  5680423350.C |
5§ | 6643403035.0 ! ~10290725766.,25 1995265925,75
6 6266154510.0 | -9287917773.75 | LSL77TL7212.5
7 5553170122,5 | -B309L8LE73.,75 ©  L2LOOTLSBE.TS |
8 4170752560.0 -7.26843722,5 ' 4117563450,0
9 39¢3509530,0 =7777L92222,5 4225106357.5
10 18856197360,0 -8795193907.5 4379410035,0
11 | -17263023277.5 -7049249707.5 1125573¢987.5
12 | -25%9010822070,0 26360651098 ,75 4015671660,0
13 | 225881530£75.0 -9411730L531.25 627LLB6YOE . T5
W | 2054113810750,0 -35764575721t . 75 37045921612,5
15 }1091760732562,5 545680366261,25 -109176073256,25

LOCKHEED MISSILES & SPACE COMPANY

i o AL

S OSSO




R =

O OO 3 O\ & wN O

I =

‘E; t:"

P s s e tean s

Table 3=Ta

COEFFICIENTS G_']t FOR THE DIRICHLET PROBLEM

0
354729,375
1400726,25
1273269,375
2082150.0
2035687,5
~52421985,0
-758372422,5
~12515933430.0
187038664 31,25
5912375644 37,5
721871541641,25
-84 35463023990,0
-9653172711662,5
32652430185375,0
36705748767187.5
-95201535879450,0
=32152353573965 .625
131993872566806,25
-59228019741515,625

1
=18992265%0.0
-11889983283,75
-11381431736.25
-11878860960,0
~11008263420,0
~9304907535.0
-13367793285.0
=2479456980,0
-11009178180,0
-873421221172,5
-583036241267.5
16736970290040,0
18387760531140,0
~120696031330875.0
-100667868926625 ,0
14314638L41508700,0
81226998502650.0
-680276112459693.75
355368117449093.75

2
13744 3572568,0
353103599970,0
369123764232,625
370580264955 ,0
339630798150,0
311613956955.0
301540337752.5
2527L46909415.0
181892250540,0
567608756715,0
196495107558, 75
-12982622826175.,0
~6672038463090,0
1560841376834625.0
7608L428963062,5
-748947862537875 .0
0.0
1421472473796375,0
-888L20296122734.375

(Table continues on next page.)
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Table 3=Tb

COEFF1CIENTS GJ FOR THE DIRICHL&T PROBLiSM

t

}

O TN OV E W N O L:>///
o

el -

il
R

3 l L , 5 .
-937260303360.0 = 2LLOBLLOLGOGL.O = -26793069L3360.0
-21498276112832.0 6671675630592.0 -7457522:868000,0
-2753248927788.0 76129752229kL ,0 -6721L456L57500.,0
-27014¢6136R12,5 7360090004100,0 =6345%20571200,0
-2457927602392.5 66LL016395060,625  ~7L7TT774083990.0
-2232604,008452,5 59L92419760830,25 -6020L85137503,75
-20206862629632,5 5265640393061 575 -56279L4C150051,25
-1772818610062,5 L64BB13932262,5 -5153677211182.5
-1585£06725002,5 L17867CLu6595.625 ~L66oli5L2970567,5
-1619620925422,5 3655431313L483.75 -} 306063901391 ,25
-14527055968L42 .5 33814 30148971.875 -400199873LLE3,75
2066346785002 ,5 2706693644655 .0 =36L46096825575 .0
-30L0365L05577.5 3217180L45356.875 -L,06092632L44L 75,0
-81229508297437.5 157928637003L3.75 =15 36L5L076L06.25
3802339103062,5 -144785828541659, 375 -30068224127716,75
606110728037312,5 -217260385779937.5 198700L45332637,5
| =1692229135L7187.5 1776840592256 ..675 -609202L8876987,5

-152300622192U687.5 | £6303685909065.,25 | ~233527620695118,75

! 1184560394830312,5 i-888h2029612273h.375 i 355368116LL9093.75

(Table concluded on next pages)
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COEFFICIENTS G

Table 3=Tc

FOR THE DIRICHLET PROBLEM

4 it
{ :
3 6
0 1045037056000,0
1 291876901 3200,0
2 3512107315200,0
3 3335791488000,0
r n 2969841,006000,0
L 5 2607171340410,0
, 6 2286530498629, 375
! 7 2040565008982, 5
.;- ! 8 187L4170592043.75
9 1772671312912,5 |
10 1726104090335, 625 |
L ( 1 1749130546165.0
i 12 1840683497152,5
13 1932541986375.0
W 1929404742890, 625
; 15 1965169318612,5
] 16 338445827094 3,75
. 17 20306749625662,5
[ 18 | -59228019741515,625
1
4 o The reader will observe that some of the entirics in these tables
contain as many as 18 significant figures. The author chose to
! stop the computer program with the coesficients G & since to con-
ﬁ v tinue to any higher-order terms would not permit the exact deter-
f mination of the coefficients. The author is well aware of the
| fact that these coefficients already contain more significant
figures than can be expectod to be of significance in a practical
s ( 3-25
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problem,

value is questionable,.

However, the author feels that a scientist should be
permitted to occasionally enjoy the "luxury" of obtaining exact
results which have an esthetic value even if their practical

However, in the particular case of the

coefficients which have been presented above, it may be that the

effective use of summation techniques in order to sum these series
will actually require these exact

results for the coefficicnts,

Let us now turn to the second case of the Keller, Lewis, and

Seckler rccursion formula which was run on the IBM 7090.

For the Neuman problem, the leading term (i.e., the coefficient
which corresponds to that occuring in geometrical optics) is

In Table 3-8 we give the coefficients B
probleme

a = A = 2

000 00

it

and C

(3=49)

jt for the Neuman

Tables 3=9 through 3-12 contaln the other terms in the

series for this problem which have been evaluated.

Table 3-8
COEFFICIENTS By, AND C,, FOR {H NEUMAN PROPLEM
o3 “3t
t t
j 0 1 |3 0 1 2
o 6 16 0 -15 -528 896
1 6 | -2 1 18 | =318 | 560
2 18 |-12 2 87 | -L26 | L6s
13 =30 30 3 sLo =540 180
! L -9L45 1260 | =210
j 5 |-3150 | Lllo |-1260
’ 6 3465 | -6930 | 3465
3-26
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Table 3~9
COEFFICIENTS Dyy FOR THE NEUMAN PROBLEM
\ L 0 1 2 3

0 105 23112 -126336 114688

1 7 23535 -138096 128128

2 5Lo 18600 -96789 86856

3 3060 5700 -65265 63525

N 25830 -2520 -71505 57330

5 -43470 105210 =97965 L5675

é =346500 526680 -190575 13860

7 180180 -540540 LosL05 ~L50L5

8 9L59LS 2162160 14,864,685 270270

9 -765765 2297295 -2297295 765765

Table 3=10

COEFFICIENTS E;y FOR THE NEUMAN PROBLEM
Lt
k 0 1 2 3 A
0 -1181,25 =1200984 1), 74688.0 «34750U6 220774L40.0
il -2205,0 =1775949 23133528.0 -57321560 3704L22L,0
2 -1822,5 -1327977 17333680.5 -14319028 2803L496.0
3 14895,0 -1054515 14187555.0 =35566125] 227411320.0
N 11,,821,25 -1535415 15210942,5 ~2976655 18487218,75
S 1638630.0 -1755810 9070740.0 -2314998 14878710.0
6 -2671515.0 7283430 3329865.0 3329865 1297425.0
7 | =37567530.0 57026970 =6756750.0 -24054030]  11981970.0
8 -2331078.75 -38108070 65810745.0 -3432429 9121612,5
9 | 20L4L59255.0 =5000445L5 37675380.0 -82702620 1531530.0
10 | -21824302.5 189143955 | =327364537.5 174594420 =145L49535.0
11 | -392837L445.0 1265809545 | -1LL0OLO3965.0 654729075 -87297210.0
12 250979478.75 =1003917915 | 1505876872.5 «1003917915| 250979478.75
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Table 3=11a
FOR THE NEUMAN PROBLuwsM

Jjt

t
3 C l 2
0 18191,25 720495900 =1605637888 .0
bl 53156,25 140L40709,25 ~3370646760.0
2 33941,25 1155326U44 .5 -2964,851887,.5
3 37406,25 112536753, 75 -2779312432,5
N 865856.25 112393575.0 -2439376905 .0
5 94185201,25 52560191.25 =1970244675 .0
6 130756106,25 13 8967.5 <1954005322,5
7 -204222768,75 900303153.75 -2301056257.5
8 -4466718506,25 7104857760.0 -28964483590.,0
9 -2868747131,25 -18050995L6.25 7435578150.0
10 36435673023,75 -94215513892.5 T2114770227.5
1 24170415018,75 -28797167148,75 -2660382474 7.5
12 | -132266185301.25 | LSB790UBTISS.0  -5652057861L5,0
13 | -18823460906,25 -18823460906,25 |  175685635125.0
U | 207058069968,75 -865879201687.5 1392936107062,5
15 | -109176073256,25 5u5880366281,25 | -1091760732562,5

{(Table is concluded on the next page.)
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COEFFICIENTS F

jt

Table 3-11b

FOR THE NEUMAN PROBLEM

t
J 3 L s
(] 7404675072,0 ~11469545472,0 5641732096,0
1 160969610880 -25456091136.0 12694528000,0
2 1466672804 .0 =23700901056,0 11992866816,0
3 13221905962.5 -20759L495400,0 10283179200,0
L 111427955100 ~171356917363.75 8380599990.0
5 9251998245.0 ~14213492133.75 6925025756.25
6 8210393730,0 =12216371186,.25 5883263347.5
7 70695199575 ~104402388246,25 5035591811.25
8 4729184L60,0 -8781950677.5 14408914510,0
9 1750538790,0 -8542491157.5 1081910332,5
10 =7332965640,0 -10759381132,5 3768329565.0
11 Lhl99752797.5 -15997213732,5 2728037812,5
12 | 263104852030,0 ~Uhli23367738.75 0.0
13 | -225881530875.0 94117304531,25 52741486968,75
1 |-1054113810750,0 357645757218,75 -37646921812,5
15 | 1091760732562,.5 -5456880366281.25 109176073256,25
3-29
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COEFFICIENTS G

Table 3=12a

FOR THE NEUMAN PROBLEM

it
t
x 0 1 2

0 =354729.375 -48992265%0,0 181732327632,0

1 -1400726,25 ~11886381416,25 471713468130,0

2 -1273269, 375 =11369792643,75 Li93165L48L463, 375

3 -2082150.0 =11861529660,0 493784995905 .0

L -2035687.5 -10987567920,0 LL9568651570,0

5 52421985.0 -92149623185.,0 Lo9L55822825.0

6 758372422.5 -13433718375.0 354506450607 .5

7 125159334 30,0 -16615118520,0 327045483765 .0

8 -18703866431,25 88663695120,0 202768986420.0

9 =591237584L 37,5 9L 3u51961952,5 106555433985 ,0
10 -721871541641,25 82823227987.5 1662935465Lk1,25
n 61351 63023990.0 =1757659L855820,0 1438374 3048675.0
12 9653172711682,5 =17596673214120,0 2576053369890,0
13 «32652;30185375,0 122604258952375,0 =1624408820699125,0
U -36705748767187.5 100366693552125,0 -71867973740052,5
15 95201535879450.0 -433210658680800,0 757681948398375.0
16 32152353573965.625 | -81226998502650,0 0.0
17 | -131993872566806,25 680276112159693.75 | -1421)472473796375.0
18 | 59228019741515.625 | -355368118U49093.75 | 8BBL20296122734.375

(Table continues on next page.)
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Table 3-12b

COEFFICIENTS Gjt FOR THE NEUMAN PROBLEM

(Table concluded on next pages)

3-31

t
3 3 L 5
0 =139577693798L .0 388911539L4048.0 =L46107051622) .0
1 =3754528641,288 .0 106990L457976,88,0 -12),64072957952,0
2 =14120084137132.0 121052824455 36,0 ~1440241,8162816,0
3 ~i006510659787,5 11534155406 340,0 -13521037575360,0
b -3595959838327.5 102083298L4619,375 | -11817369920790.0
5 -3217416555307.5 8938503496203,75 =10164946510136,25
6 -287690L578047.5 77392194 30298.125 -8645108453808.75
7 -24,56455358857.5 65909207739317.5 =7334426516917.5
8 -2133839285077.5 5722828821084 ,375 -6345237370972.5
9 -2183792928617,5 5128131594836.25 -55868995390728,75
10 -2391514342717.5 14311898373908,125 <11901269118996, 25
n -3503258861602,5 2864614297545 ,0 =4410473292225,0
12 +7296977365177.5 9591180780L43.125 =4613002819425,0
13 8Lokol 784594 37.5 -7359973214 343,75 =600468L029093,75
n =17656406330062,5 34061052509859,375 «9279966226781,25
15 -625578899758312,5 234728557500937.5 -28604131193137.5
16 169222913547187,5 -177684059224546,875 6092021,8876987,5
17 1523006221921687.5 -863036859090656,25 233527620695118.,75
18 | -1184560394830312,5 888420296122734,375 | =355368118L49093,75
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Table 3=12¢
COEFFICIENTS GJt FOR THE NEUMAN PROBLEM

t
) 6

0 1794850684928 .0

1 5071917154 30L .0

2 5951569096704 ,0
13 5525039063040,0

4 L4776418491600,0

5 40515141368490,0
6 3408147408290, 625
7 2885500155037,5

8 2L96129902516,25

9 2201422370647.5

10 196901221454k , 375
11 1811548053315,0

12 1725232936927.5

13 1581170716125,0
1N 1082349002109, 375
15 =218352146512,5

16 -338LUS8270943.75 |
17 | -203067U9625662,5 |
B | sszangmass.eos |

The reader may be interested to know that the "run time" for each
of these problems on the IBM 7090 was 0.05 hour. Since the "cost"
of computer time on such a computer is generally between $300 and
$500 per hour, we sce that the obtaining of thcse tables "cost"
less than $50 in actual computcr expenscs. Needless to say, the
true cost was far greater because of the time required to program
the recursion formulae and the dcbug;ing of the programs, However,
when one stops for a moment to realize the tremendous amount of
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labour that would have been required to have obtained only the
tirst fow terms in these series on a desk~type manual computer,
one can begin to see vividly that the electronic computer has
opened an era in which recursion formulae such as those derived

a decade ago by Keller, Lewis, and Seckler may take on an entire-
ly new importance. Granted that the series in their present forms
are of limited usefulness because of their asymptotic nature, the
fact that a summation scheme may be devised which will extend

the value of these series to smaller value of ka mekes these
series stand out as a promising means of obtaining practical re-
sults for the scattering properties of smooth obstacles. The
studies made by the present author have only involved the case

of the circular cylinder and the two cases of the Dirichlet and the
Neuman problem. However, in their classic paper, Keller, Lewis,
and Seckler (Ref. 8) consider as their Example 2l the "Diffraction
of a Place Wave by a Circular Cylinder (aU/auv = ikZU)." Time under
the present research program was not available for the completion
of a program based upon this case of the impedance boundary con=
dition which would have led to the results of the Dirichlet and
the Neuman problems for the special cases of 2 = o and Z = 0,
respectively.

Although the author has devoted these efforts to thc circular
cylinder problem, it should be emphasized that the classic paper
(Refs 8) which was used to obtain Tables 3-=3 through 3-12 also
showed how one could apply similar methods to other obstacles.
Even the case of a sphere (which was briefly considered as Examples
19 and 20 in Ref. 8) offers "rich rewards" to anyone who attempts
to follow up the problem of working out the expansion in inverse
powers of ka and then to attempt to find means of summing the
series. It should also be borne in mind that with the coming of
age of the computer that some of the actual algebra which is re-
quired when one follows the methods of Ref. 8 can be mcchanized.
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The present author has prepared several computer programs which

are valuable for carrying out of tedious algebraic manipulations
with polynomials. Although these have proven to be of considecrable
advantage, time has not permitted the application of thcsc mcthods
to attempting to extend the work on the finding of expansions in
inverse powers of k = 2n/A for points in the lighted region. How-
ever, as an indication of what may lie just ahcad in tuc field of
currying out tedious algebraic manipulations by means of clectronic
computers, the author wishes to call attention to a paper by Brown
(Ref. 9) which describes the ALPAK system which has been under
development at the Bell Telephone Laboratories. The prescnt
author readily admits that his own experience has not led him to
be as optimistic as to lead him to agree with Brown's "seerule

of thumb that ocne man=~hour equals one T090-sccond." Howover,

once the particular algebra of a specific problem has been so
organized as to be performed by the computer, then this rule of
thumb is certainly very close to being consistent with the author's
experience., The author belicves that within thc next decade that
someone will rework the theory of Ref. 8 by employing routines

on a digital computer to carry out the tcdious algebrae. The re-
sults will certainly lead to an enhanccment of our understanding
of the "breakdown" of geometrical optics as the wavelength in-
creases anc becomes comparable with the radii of curvature of the

scattering obstacles
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Section 4

ASYMPTOTIC EXPANSIONS FOR THE HEIGHT GAIN FUNCTION
FOR THE CASE OF NORMAL REFRACTION

el Introduction

This section deals with a number of aspects of the problem of
obtaining and of employing asymptotic representations for the
class of second=-order differential equations which arise natural-
ly when cne attempts to solve the wave equation by the method of
separation of variablese The choice of the material to be in=-
cluded is based upon the author's experience as to what results
he has found useful (or interesting) in his work on the theory
of the diffraction of waves by convex surfaces. The author has
chosen to refer to the type of problem to be considered by the
use of the term "height gain function" since the variable in the
differential equation is generally related in some way to the
height (or the distance) of the observation point from the con-
vex surface. The restriction to the case of "normal refraction
is included in the title because all the asymptotic results to
be discussed in tiis section arise from the consideration of dif-
ferential equations which have only one "turning point." There=
fore, we have excluded all problems in which the index of re-
fraction above the convex (or the plane) surface varies in such
a manner as to give rise to the phenomena of superrefraction,
tropospheric waveguide modes, or similar complications of an al-
ready complex problem.

lLe2 Problems Leading to the Height Gain Function

The height gain function F(y,ks) with which we shall be concerned
is the solution of the differcntial equation

L-1
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:—2F2 + [=A, + K°T(y)] F = 0
¥

(4=1)

for the case of "normal refraction" which we shall define by
the requircments that £(y) > 0 and £’ (y) > 0 for y > 0. The eigen=-
values KS arc to be defined by the impedance boundary condition

dF -
(a-i-i'ikzp)y:o =0

(y-2)

The function F(y,ks) occurs in many problems which involve the

propagation of waves over convex surfaces or over plane surfaces
above which the¢ indcx of refruction is a function only of the

height above the surface.

Let us cite scveral exampless The solution of the problem of

propagation of axially symmetric waves in a horizontally strati-
fied atmosphere above a plane surface is govcrned by the equation

2 2
3G 1a 236G 2

+ - — + + k¥ n“(y)G =0 .
ox®  xax oy

The solution is of the form

i I |
Glx,y) = )= M (u x)e, (v) 2 (3,)

g=1 '+
where &(y) is a solution of
a°s 2 .22
:i—g+ [=+,~ + kn"(y)]e =0
y

which appears in the standard form of Eqe. (li=1) with KS
and f(y) = n2(y). '

As a second examplé, lot us consider the problem of the
of two-dimensional waves over the surface of a circular

=2
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propagation
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when the index of refraction is a function only of the distance
from the center of the cylinder,

2 2
S 4128, 1588, 12526 =0 (Li=6)
ap P 9p P d¢

The solution is of the form

2.1 exp(iv_ o)
Glosg) =Y 3 ——2m & (0)4, (p) (4=17)

where &(p) is a solution of

2
2 ) -
484282, -5 4 iPn(p)je = 0 (1=8)
do o dg 0

Eqe (,=8) does not immediately take on the appearance of the
gtandard form which we have taken to be that of Eqe (4=1). How-
ever, if we make the transformations

o =a exp(y/a) , v = a log(p/a)
and define

a(p) = F(y)

we will find that F(y) satisfies Eq. (L=1) provided we make the
definitions

= (/a2 , £y) = [onlp)/al’®

Another good example is the problem of the propagation of axially
symmetric waves over the surface of a sphere when the index of re-
fraction is a function of the radial distance r alone.

2

3. G 2 oG 1 o) 2
Lo+ S o O 2 (sin 62) + ¥%n%(r)q = (4=9)
@rd r3dr rsin e a6 a0

The solution is of the form

=3
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. P (-cos @)
3 Dt
G(r,0) —s= S ws(r)ws(ro) (L=10)

Leos (v m)

where ¥ (r) is a solution of

a2y Cl iif;ifi + k2n2(r)]! =0 (L-11)
E;Z r dr r

Eqe (4=11) can be brought into the standard form of Eqe. (l=1)
by making the transformations

r = a expl(y/a) , y = a log(r/a)

and the dcfinition

1
¥(r) = — F(y)
r

along with the identification of A  and r(y) as being

e l= (vs,/a)‘2 v fy) = [rn(r)/a)?

There are several other classical problems which we could cite
which would lead to an illustration of the fact that Eqe (l=1)

is of paramcunt importcnce in the study of wave propagation prob-
lems. However, in order to focus more sharply on the subjuct
matter of this Section, let us citc one morc example wvhich can
serve as a model for most of the .above p.oblems, We will con=-
sider the height gain function F(y,ls) as it arises in the solu-
tion of the separable wave cquation

2 2
ol +9—g + K2 [f(y) + g(x)] Us=-6(x-x)60-Y,) (4=12)
ax~ oy

Barring ccrtain pathological cases which we need not consider here,

it is possible to obtain solutions of Eq. (4=12) in the form of
a series of normal modes of the form

L=l
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+ -

o ¥ (X, A )¥ (X _,A) F(y, A_) Fiy., A_) ‘

U(x, y; Xy yo)' z > sws_ <'"s st o' s (=13}
8=1

where y(x,A) and F(y,A) are solutions of the ordinary differentisl
equations

2

N S RAL (L=11)
dx

&F 2

= +[-A+k f(y)] F=0 (4=15)
dy

If we assume an exp(~iwt) time dependance, we must require that
the "distance" functions \y’—'(x,xs) have the properties

‘pt _re constant X /=
(x, A i3 exp| £1 / kg) + A, du (L=16)
0

and the "height gain" functions F(y,ls) have the property

y
F(y, A )—e—S20Stat_ opli / VE*$(v) - A av (=17
o % Kemt-o0 %c_zf(y)-xs o/ s 4=17)

The properties which have been prescribed in Eqs. (4=16) and
(L=17) are asymptotic properties which are based upon the so-
called WKB approximation for which there exists a very large
literature. In order to complete the description of Eq. (L-13)
we need to set down the fact that the eigenvalues Ks are defined
by the homogeneous boundary condition

9F(y, Ay)
—5 *L1KZFO.A) =o—0 (4~18)
y
The Wronskian Wy is defined by
_ _gt 9 _ - dv’
WS-W()\S)—\II x Y (LL=19)

L=5
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and the normalization constant is defined by

Ny =NQ) = f[F(y As)}z dy (4=20)
0

Although a long list of rcferences could be cited for the benefit

of the reader who is not familiar with results such as those .
which are summarized in Eqs. (4=12) through (L4L-20), the author

wishes to acknowledge the fact that the summary given above follows

that presented by Friedlander (Ref. 1) more closely than that of »
any other source with which the author is familiar. Although the
monograph by Friedlander (Refs 2) is generally more accessible

to the general scientific public, the author highly commends the

original research report to a reader who wishes to acquaint him-

self with this subjoct matter.

lie3 Survey of Some Proevious Work on the Height Gain Function

Perhaps the most extensive papcrs on the height gain function and
related problems are the two papors (Refs. 3 and l}) by Bremmcre
There 1s a marked similiarity between many of the results obtaincd
by Bremmer and results which will appear below. However, tho

work reported in this report has been undertaken independently of
that of Bremmer and a detailed comparison of the asymptotic ox-
pansions have not been undcrtaken by the present author.*

*Although many of the results in this report have been made avail= .
able to Bremmer (and to his collaborators at the National Bureau

of Standards at Boulder, Colorado) the present author has not been
informed of any discropancies between the results herein reported v
and those reported in the papers published by Bremmer. Since

these two pieccs of work have been carried out independcntly and

follow somewhat different "lines of attack," it is hoped that in

the near future such a comparison will be made. )

ly=6
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The cylindrical (Bessel) functions Zu(kx) are solutions of
2

x2 2_% + X 4 | (k2x2 - uz)Z =0 .
dx dx
Since the transformation y = a log(x/a) leads to the operator
2 2
2 d d 2 d
X =—ptx=— =a —s
dx dx dy

the cylindrical functions are the solutions

F(y) = 2 [ (xa)exp(y/a)]

of the equation

d°F 2. .2
—= + [=(v/a)“ + k“exp(2y/a) JF = 0
dy2
which is of the form of Eqe (4-1) with A = (u/a)2 and £(y) =
exp(2y/a). Therefore, it is not surprising that much of the lit-
erature that is appropriate to the study of the asymptotic behavior
of the height gain function for k - o has had its origin in the
interest of the author in developing asymptotic formulae for the
cylindrical functions. For a swmmary of work related to the
asymptotic expansions for Bessel functions (and a good guide to
the literature), the reader is advised to consult Olver‘'s preface
to a table of zeros of Bessel functions which was prepared by the
Royal Society Mathematical Tables Committee (Ref. 5). Erdélyi
(Ref. 6) has also rccently written a survey of the literature re-
lated to the study of Eq. (L~-1). However, these surveys faill to
include some results by Pekeris (Ref. 7), Fock (Ref. 8), Imai
(Refse 9 and 10), and Friedlander (Ref. 1). In many respects, the
research reported in Refs. 7 through 10 is more directly applica-

ble to the propagation problems than the more general results
which can be found in the other sources.

It will be convenient to start our discussion with a paper by

4=7
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Pekeris (Ref. 7) in which he defined

L a2
Ks = = k g

and suught solutions of

2
ar, kzlps + 1) F = 0
dy (4=22)
He showed that one could express (v, -kzus) in the form
2 1 1/2 (2) 3A 5/6 (2)
F@y, -k Bg) ~ [« /5% toas B W

3/k2ius + f(yl

B 3/2 (2) -8/3, _ ..
- —= u"/“R, (w +0k %) + (4=22)
ok? /3 }
where
y
uly) = k f Vi + 1) dh (4=23)
Y1

and y, 1s the turning point defined by
pg + f(yl) =0 (L=2)
The constants in Eqe (4-22) are defined by

4/3 « 2 =
a8 [ofd) - wff)]

- = - 3
B=—1— [-25(f—)+7o(f,—2‘) -42(-_‘-) ]
450 1 f f i
where
. df(y,)
dy
o d%r(y)
dy
l4=8
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Pekeris showed that he could also express Eqe (4-22) in the form

1 3
ry, -K2n,) ~ 1 “1/e(uz/3 A /k4/3)2 “1/3(2’[(‘2/3 . .A./k“/”)’

Y [1s + 1)
3/2 /
e

t = (2)2/3 (4=26)

The function hz(X) in Eq. (4=25) is defined by

hy00 = ( )1/3 ;Hl/a(z) (z 3/2) M3y /3( ey , wE (3_;) 2/3 (L=27)

These are the Airy functions which were tabulated by the Harvard
University Computation Laboratory (Ref. 11),

or

where

Imai (Ref. 9) rediscovered some of the results which had been
derived by Pekeris. In a later paper, Imai (Ref. 10) found an ex-
tension of Eqe (4=25) which can be obtained by employing a result
that was used by cherry (Refs 12). From Cherry's Lemma 1, we can
show that F(y,xs) can be expressed in the form

1
Fo, o) =(§;‘)2 hy t) (14=28)
vhere (y) is a solution of the equation
n 6i)? - %(%)“%;’,ih A, + K2 109) (4=29)
h
where . dn . dn o, 4
n —ay'.ﬂ-; ’ ”' d_y-a-
Eqe (4=25) is an example of Cherry's Lemma. Thus, let
n=t+(3)¥° 5+ 0ar® (14=30)
2 473 &
=9
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1/3 _ 1/3 |
g & @7 @A e

dy dy
Therefore, Eqe (4,=25) can be expressed in the form
'o\1/6 -1/2
2 2 d (4=-32)
F (Yr‘ k I‘,) ~ (5) (3-3) h, (1)

where 7} 1s defined in Eqe (4=30)s The term B/k2 in Eqs (4=22) can
be used to extend Eqs (4~30) to include a term in B/ka. This step
was apparently not carried out until the publication of Imails
1956 paper (Ref. 10).

In order to appreciate Imails results, we use Eqe (4=27) to express
Eqe (4-28) in the form

S (%;])-1/2 z1/3 Hl/3(2) @) + g - gns/z (4=33)
From Eq. (20) of Ref. 10, we find that Z has been approximated by
Z = J;ZT;; [& + % a, K2 EZI 2 (L=34)
where
¢ = o/ + g

K

y
ww) =k [ VESFIE
Y1
2 _ .2
kK =Kk +ta,
The constants a, LAY and a, will be defined below.

We have taken some liberties with Imai's notation in that we have
substituted some of the notation employed by Pokcris. Actually,
Imai (Refs 10) studied the equation

2 -
2 P =0 (4=35)

I=10
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under the assumption that

2 3
P(x) = alx(1+b1x +byx" + boX” + - )

(4L=36)
If we let
a.2 =k2
X=Y -yl
8'1 -.f'(yl) =[%] = i'

y=y

b 1 dn+1f
81% = n! n+l |
y-yl

we can compare the papers of Imal and Pekeris. The constants a,
ays and a; used by Imal are defined by the relations

o3 (8, Vsl g2 =
a=-3s (2 al) (5b2 3b, ) . (4=37)
— i —1 - 3 j -
@, = - 7§ a (25b3 35b,b, + 14b, ) , (14=38)

_ 27 (3 _\-4/3 ) 2
@, e (2 al) (6125b4 4350b," - 9800b,bg
+ 12080b, %, - 3sz4b14) , (4=39)

We observe that the A and B of Eqe. (4=22) are essentially the

same quantities as the a and a, defined by Egss (4=37) and (4-38),
respectively.

Let us use the definition of 2 in Eq. (4=33) to write

= (9@ eded

5 1
2/3 a
k -
~(%) [““%kf"%“ﬂ‘zfz]

L-11

(4=39)

Nio

LOCKHEED MISSILES & SPACE COMPANY

s 2 —




>

e

v -

From the definition of g which occured in Eq. {(4-34), we find that
A 5
2 k 28 2|k (=140

2/3 ) 2/3 1 % 2/3 1 % 43
(2) o) + 473 3 83 O 5 g

(L=ly1)
If we recall the definition of z given in Eq. (4=~26), we can write
2/3 a 2/3 a
= 1 7o 1.2 1 2 -10/3
n E'f( ) 2-+3 2 +32(%) t“+0 (k
2) A37T3 28%5(3 873 ( ) (-2

When this result is compared with Eqe (4=30), we see that a = A.

The simplications we have made in Imai's results have led us to
recognize that we have available two additional terms in Eqe. (4=30).
Imai was apparently not familiar with the work of Pekeris and Cherry
so that the use of Eqs (4=42) in Eqe (4=28) to obtain a useful
representation for F(y,ks) is a new resulte Further terms in

Eqe (4=42) can be generated with the help of Ege. (4-=29).

li.ly The Research Reported by Fock

In a classic paper on radiowave propagation, Fock (Ref. 8) studied
the aquation

2
daG 2
;—u§-+ [-t+u+HOUJG=0 “4'-)4-3)

He showed that
B,
G, t) = w(t-u) -—|:(3u+2t) w (t - u) +(3u + 4ut + 8t )w(t-u)] + 0( )“l—"’-lll-)

where w(z) = w,(z) 1s Fock's Airy function

w(z) = fgexp (1%‘[) (_z)1/2 / (1) [ = z)3/2] (L=L5)
Fock also used the form
1
G, t) ~ (— %) 2 v ™ (L=Ls6)
g=12
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in which
P
X~ (t-u)-38 (u? + atu + 8t2) + O(ﬁg) (4=47)

From Fock's paper, it is not clear whether Fock realized the im-
portance of the form of Eqe (4=46) which is essentially the same
as Cherry's form for the solution which we gave in Eq. (4-28). The
relations between the two types of Airy functions are

wo(-n) = {‘%‘ exp ("1 '25') h, ) (4~48a)
wy () g e (L) ) (14-48v)

The expressions given in Eqe (4~28) and Eq. (L4-=46) are special
cases of a more general result. Let F(y) and Z(x) be solutions of

the equations

2 2
dF d"Z -
L S =0 —— +Q(x) Z=0
5~ +P@y) F . o2 Q(x) (L4=9)
We can then show that
1
= (9n) 2
70 - (§) * 2o (14=50)
provided n(y) is a solution of the non-linear equation
(4=51)

2

2 _3(x 1M _

M QM) 4(1") t3 i P(y)
Fock arrived at Eqe (L-=47) by using the Langer (Ref. 13) asymp-
totic estimate (the first term in the Pekeris-Imai expansions)

3
2, 2 u
3 X)" ~ f v-t+g v dv (4=52)
u, '

where uy is the turning point which is dsfined by

w-t+g u? =0 (4=53)

=13
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Fock did not indicate how one could obtain higher-order corrections
of Eqe (4=U4T) or Eq. (L4L=52).

Eqe (4=47) has the advantage that it does not involve the turning
pointe This is a very desirable feature when one sets out to solve
for the eigenvalues ts which are defined by

[%f% + qc]ﬁ, =0 (14=51y)

For example, Fock showed that

ﬂo 2 3+4qu (2)
t@=71_+3¢ |87, - —| +O\8
S TS ° (4=55)
where Tg is a solution of
W’ (tg) - awy () =0 (14=56)

In order to see the advantages of Eqe (4-55), let us take q =

and write
_.o . 8 . 2+-0 Bz
ts(”) = TS & IE'; BO Ts (0) (’-l-"'57)

where

wy (133 = 0 (4=58)
Let us now compare this with the procedure which involves the use
of the turning pointe Let us seek the roots Ag defined by

F(0,Ag) =0 (4=59)

Let us express F(y,A) in the form
)"1/2

g :
Fo. A = () T wen (14-60)

where 7 is given by Eqe (4=42). We find that the roots of F(O,hs)

= 0 are to be obtained from the relationship
2/3 a 2/3 a
© _ 3 a_ .10 1.2 1 . 2,.., (4=61)
ety AEts g5 armte

where & is defined by

b=
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0 0
8/2 _ - = -
£ -u(O)—kf Vi, FIE) db f K°f(h) - A, db (4=62)
Yy ‘A
and the turning point y; is defined by

Wl

2 -
kK“ f(y,) - A, = 0

Since Ks appears explicitly in the factor vrsz(h) - ls in the
integrand of Eq. (4-62), and implicitly in the integration limit
¥1» the ‘nversion of Eqe (4-61) to solve for Ay requires some
skillful analysis. A method for achieving this inversion was
described by Pekeris (Ref. 7). A comparison of Fock': procedure
with that used by Pekeris shows very clearly that Fr :k's method
is more direct and hence it would be advantageous to extend Fock's
analysis to include higher-order terms,

he5 The Contributions of Friedlender

Friedlander (Refs 1) considered the problem of determining the
behavior, as s - », of the eigenvalues A of the differential

equation dz

2
3+ -]y o (14-63)
dx
subject to the conditions that y -+ 0 as x + » and either y = 0
or dy/dx =0 at x = 0, He assumed that g(x) was characterized
by the conditions g(0) > 0 and g’ (0) » 0 and assumed that g(x)

could be represented in the form of a Taylor series
2 3 1
BX) = B, + By X+ BX + X 4+ -+, g = g™ (l4=6L4)

Friedlander assumed that A could be expressed in the form of an
asymptotic series in inverse integral powers of §§

© 2
ot S oeTT L g g (4-65)
m=0

and that y(x) could be expressed in the form of a similar series

=15
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© 2m _
i - 2/3
y(x) = z Ym(‘n) 8 -3_ y N =28 / ()_l_-66) \)
m=0
Priedlander showed that the coefficients ¥ (n) are determined by

a system of recurrence relations

%—‘; + (c - g Y, =0 (4=67a) .
g:fil_ +(c;-gnY = (82'72 ") ¥, (4-67p) .
% + (c) - &M Yy = (83"3 - cg) Yt (82"2 "Gl Y (4=67c)

Friedlander showed that

s, -2/3 (L-68)

Y,m) = L Al (g, -a)  , a=c g

where L is a constant. He also showed that
Y,m) '—7— f Al(gll/sg a) Bi (311/3 )

- Al (311/317 - a) méll/:’g - a) ]
Jeat® - o] 1 (6,2 - o) (14-69) .

and gave a similar result for Ym(n). However, Friedlander did not
evaluate these integrals and hence Yo(n) is the only Y (n) which
is given in its final form.

If we put s = tik in Eq. (4=63), and replace x by y, g(x) by f(x),
and y(x) by F(y,X) we find that the function being studied (for

b6 )
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the pulse problem by Friedlander) is essontially the height gain

function which was being studled by Fock.
.4
+ 1=

L
[A1 ( g2/3 l;11/3 = a)L . - ﬁ;;},ﬁz v, '2(“*1 5 k2/3811/3y) (4=T70)

Therefore, we can use Friedlander'!s theory as a starting point to
obtain an extension of Fock'!s results. Let us return to the dif-

ferential equation for F(y,xs)

2 -T1
"—2‘-‘-+[-x +k2f(y)]F=0 (4=71)
dy 8
and express f(y) in the form
= 2 B s 2
f@)-f°+f1+f2y +f3y + fo+f1 [y+b2y +h3y3+- . ] (4=72)

where

f n
_.n, __1 |d fml (4=73)
hn' fn\ T n!if [ n
1 1 dy y=0

Let us define ts by means of
.2 4/3 . 2/3 3
A = KL+ KT YTt (L=704)
and u by means of
_ ,2/3 . 1/3 .
L T (L=15)

We then find that if we define the parameter § to be
p =313 (-76)

that Eqe (4=71) [which 1s identical with Eqe (4=1)] takes the form

2
g—G-+ -t +u+p u2+p2 u3+ﬂ3hu4+--- G=0
2 by 4
du = "2 (4=77)

where

G(u, t;) = F(y, A,) (4-78)
h=17
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A comparison of Eq. (4-78) with Eqe (4=43) reveals that if we let
By = Bh, and neglect the terms in " for n > 3 in Eqe (4=77) that
we have Fock's approximate differential equation.

Let us follow Friedlander [cf. Eqe (4-66)] and seek a representa-
tion for G(u,t) in the form
0

G(u, t) = 2 G, (1) g (4="19)

n=0 »n
We then find that the Gn(u’t) satisfy the equations

[ 2

d (t+u)]G 0

—_— ¢ (- =

bdnz (o]

[ 2

d _ 2

d-?+(-t+u)] Gl--hzu Go

o =-h,u’G -huG

—5 t (t+uf Gy = -hyu Gy - Ry u G,

(du

&2 n+l j
2+(-t+u Gn=- z hju Gn+1-j

This set of recursive formulae s similar to Eqs (4=6T7)e If we

define B
t=t(~r)=r+2 D (1) B" = z D (1) 8", D =T (,-80)
n=1 n=0
and
H(u,t) =G, t(r)) = z H (78" (1,=81)
n=0

we find that

'dz T

PR LA (-822)
.dz | 2 8
(—m—2+(-1'+u) H1=-h2u +D1 Ho (4 =82b)

L-18
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Fdz . - 2 D.lH, +|]-h 3+D H

g2 T CT W Hy = - hyut+ D[ H) +)-hu” + Dy | H_ (4-82¢)
[ 2 n+l

d _ ]

e, jzz ['hj“ +Dj-1] o1y (4-82a)

which is essentially the same as Eqe (4=67)+ Therefore, the theory
given in Friedlanderts paper for results such as those given in
Eqe (L4-68) and Eqe (4~69) can be used to determine the H (u,7).

o6 Determination of the H (u,7)

From the differential equation satisfied by the Airy function

irerfri-
— S5+ (-7T+H) w(T-u) = -
A (1-83)

we can show that

[ .2 y
3 + -7+ u)] u? w(T - u) = n(n-1) un-2 W (T -u)- 2n u‘l-1 w'(‘r-u) (LP'BLI-)
[du

and
2

_d_z + (-7 + uJ ut w'(‘r -u) =|(2n + 1) u® - 27 nun'll w(T-u)
|du

+n (n-1) w2 w'(r - u) (L4-85)

These results can be used to construct solution of the inhomogeneous
equations

2
;:3"'('7"'“,] An(u, 'r)=unw('r-u) \y=~86)
(dz n_t
L2 T B = (- (4-87)

If A (u,1) and Bn(u,'t) are known, we can solve Eqs (1.~82), How~
ever, it may be more convenient to define

X=1T-u , u=qg+x (4.-88)

=19
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and replace Eqe (4-82) by

42 n+l §
;x_z -x|H = Z [-hj (T +x) + Dj-l]Hn+1—j (4 -89)
j=2

In 1'able -1 we give some solutions of

2

dy
2-xy=f(x)
dx

which can be used to construct solutions of Eq. (4-89). For ex-
ample, the solution of Eq. (L4L-82a) is

Hy(u,t) = cqult - u) (4=90a)

where o is a constant. We can then show that the solution of
Eq. (h."82b) is

Hl(u,fc) = clw(q: -u) + col-% hzuw(‘r-u)
-[% h2u2+r45- hy Tu + l—gTzhz-Dll w'('r-u)I (L=90b)
where cq is a constant.

Before determining H,(u,t) it would be desirable to dotermine the
constants ¢, and ¢, (or, at least determine the ratio °1/°o)‘ Since
the function H(u,t) satisfics thc homogeneous boundary condition
derived from Eq. (L=54)

[%f,i + qH]u=0 =0 (1=91)

we must require that Hn(u,fcs) satisfy the equations

-

[8H,
L—au— + QH(J u=0=0 ()-l-"92a)
™y qu| =0 (4=92b)
L 8u l. u=0
We observe that Eq. (4-90a) and Eqe (l}-92a) lead to the equation
w"(frs) - quwit) =0 (4=-93)

=20
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( Teble L4-1
2
PARTICULAR SOLUTIONS OF % - xy = f(x)
dx

f(x) y(x)
0 w (X)
w(x) w'(x)
’ w'(x) 3 X W
X w(x) % X w'(x)
' x wi(x) -i x2 w(x) -5 w'(x)
xzw(x) % X W(x) + l x2 wi(x)
x2 w(x) -1- 3] w(x) -x3 1 w'(x)
x3 w(x) 'IZ 2] w(x) -0-[2 + X —] w(x)
x> Wh(x) 2 x +— 4] W) - 15 X2 wix)
( x: w(x) -gx:] w(;c) +[-§-x+§x ;w'(:;) .
x w'(x) CRIRET) xsl w(x) + o ] ]w'(x)
x5 w(x) {-1—61 x--z% x4] w(x) + 1—‘; x2+-1l1 x5 wi(x)
x5w'(x) gx3+1; 6 w(x) + [—-lggx-%x]w'(x)
xsw(x) '%91' e 13 5] ()+18° %% 3+]].‘3 6w'(x)
x° w'(x) 'ﬁ X +—- 4‘+ 1 7' w(x) + 18 x2 131 X w!(x)
X' w(x) -% 2 ]w(x)+ —x+;x4+ ]w'(x)
¢ x7w'(x) :g <+ 21 gé P 1 ]w(x) + 9; % 1 -—x ]w'(x)
v T [S0,0 0,5 2
4 x® wi(x) gs x> +i—§x6+ L ﬂ (x)+[ uz, %8 28 4. 1—45:r:'7 w(x)

C -
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which determines t, uniquely. If we observe that Eqe (4=90b) and \)
(4L=92b) lead to
BHI(u, T)
—c— +qH; @, 7) o——cl[w(r)-qwm] ‘e “ L n,wir)
u=
hz-rw (M) +15 hz-r w(r) - DT w('r)] + ql 15h2'r +D ] w'(‘r) =0 (L-94)

4

from which it is seen that the value of Dy is given by
(T'Q)Dl‘hzl 5 15'rq+ 72 (r - q)] (L=95) v

Therefore, we observe that the boundary condition given by Eq.
(4=91) determines the constants Dn but leaves the values of ¢,

undetermined,

The ¢, can be determined by requiring that the cigenfunctions
F(y,ls) have the property

sz (v, Ay) dy = 1 (1.=96) \
0

This leads to

/H(u.r R A (14=97)

If we use the property
=0

and require that
©0

]oll-!o(u, 'rs)]z du=c§ /
0 0

we observe that Eqe (4=97) is satisfied provided

w2 (Tg-wdu= K2/3 f11/3 (L=99) .

f H o, 7g) Hy(w, 7,) du=0 (4L =100a) ¢
0
[ [2 Ho(u! TS) Hz(un TB) + H? (u, ‘l'B )] du=0 (M-100b)

y=22 B
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along with similar equations involving H3, Hh’ etcs, This proce-
dure has the advantage that the ratio cn/co is independent of B.

We can determine c, from Eq. (4=99) by observing that

o 2
[ W -wan=r i) - W) -
0
since
- w wer-w] ? - @' - w) 2,= - [wir - w] 2
Therefore, we find that
2/3 . 1/3 2/3 . 1/3
5 8= e (=102
S 3 =
° Ts[""('ra)]2 '[w'(rs)lz [Ts'ql [w (Ts)]

In order to determine ¢, we must evaluate the integrals that oc-
cur in the equation

a f” w2(‘r -u)du= c—l-l'r[w('r)]2 - [w'(‘r)]2 =-D, / w(T - uyw'(r-u) du
c, ; c, ;

* ;25 [ Buwtr - w) + @u? + sur + sr2wir-ullwir-u) du
0
D h -
=-?l[w(7)]2+fg' -3 / (§+T)W2(C)d§
T -00
+ f (151'2 - 10¢T + 3;2) w(t) w'(t) a2 ibeto5)

We can show that

3 ./T 2 .2 2 2
€ + )W) dt ={ 47" [w(n)])” - 4r[w'(1)]” + w(r) w'(r)

,
f (572 - 10¢7 + 3¢2) w (¢) w') dt ={872[w(n)]? - arprr)? - w(r) w'(f)}

Since 1, is a solution of w* (1) = q w(t), we find that the inte-
grals in Eqe (4=103) lead to the result

4=-23
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c 2 Dlh

c(];( -q)= +i% a? - ml (L=10L)
Becausc of the labour involved in the dctermination of the con-
stants ¢, which will occur in the terms cnw(fr - u) which are to
be added to the solutions of the functions H_(u,t) which satisfy
(4-82), it would be most convenient to follow Friedlander's
suggestion and take ¢y = 1 and ¢, =0forn > 1., We should then
replace Eq. (4-81) by

H(u, t) = G(u,t(T)) =c(3,7) [w(‘r -u)+ z H (1, 7) ﬁn] (4=105)
n=1

and determine 0(B,t) from Eqe (4-97). From Eq. (4-90b) we know
that for this case

4

1(u,'r)--- h uw(t - u) - [5h2u == h'ru+ hz'r llw'('r-u) (4=106)

From Eqe (4-105) and Eqe. (4-97), we find that C(p,t) is deter-
mined by the relation

= c%p, ) wi) I(r - +[p, - f by 7% - ) B+ 0 (62)I (4=107)

™

We can also seek a solution in the form of Eq. (4=105) in which
H, (u,7) is of the form

1(“' ) =(c 5hzu)w('r u) - [5 hzu + hz-ru+ hzr -Dllw'(-r-u) (4L-108)

where ¢, is a constant independent of B. For example, Eq. (L=lly),
which was taken from Fock's papcr, 1s of the form of Eg. (4-108)
if we take

2
" 15 Ro” (4=109)
Let us now turn to the problem of the determination of Ha(u,fc).

We have discussed the role played by the choice of ¢y in the do-
termination of H2(u,'r\. For example, a term cqw(t = y) in H, (u,1)

=21
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L3

leads to a term in H,(w,7) “hich is of the form
1 1 2. 4 8 2
cI[- Ehzuw(r - u) -[3 hzu +T§h2'ru +i-gh2'r 1]w'(‘r - u)l (L4L=110)

If we take ¢y to be defined by Eqe (4-109), we find that Eq.
(4=82¢), with the aid of the entries in Table L~1, leads to

_ 1,2, 2_4_4,223.1
Hyu, 7) = ¢, W(T-u) *[ 50 D U 30“2 “a by +50, Dy u?

9,2 2,
"’151'2131T e - 14 ha* 70 Bg ) U 15h2D1T%‘

(35“3*1051‘2)7“ 2 D, ]“'(T “’*[‘lh
3,2 e

2) 35 hy 105“2)T ‘(ﬁha
144 2 288
3151‘2)'“ 15 2D1“ (Eha 315"2)T

§h2D17+(77- 3—-§§h2 +D2)]w('r-u) (L=111)
In the next section we will show than an extension of Fock's re-

results summarized in Eqe (L4-46) and Eqe (L4L=47) suggests that a
useful value for the arbitrary constant o is

_32 8 3., 4., .58 1,2 2, -
Cy 225h2 15h2D17+(35h3 315 2)7 +3D T -T5hD (4-112)

The obtaining of H3(u,'v), H)_l_(u,f:), etce, by the above methods is
exceedingly tedious although it is a very straight-foward process
if one uses Table L=1 along with Eqe (4=89).

lle7 Determination of n{u,t)

Let us follow Eqe (4=50) and express the solution of Eqe (4=77)
in the form

1
_{d "2 yT o l (L|-"113)
Gu, ) =52 ) “w, () = expf+12X)(dn\" 2
J (du) 1,2 - "P( 3)(33) by o(n)

where w(z) and h(n)) are solutions of' the Airy diffcrential equa=
tions 2

d—;,! -zw=0 , _(_i_l_; +nh=0

dz dn

L4=25
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According to Eqe (4=-51), the function n(u,t) is a solution of
n(n)z-%(ﬂ—)2+§(—”—) g+ § ot (4=214)
h 1 , =2
where the dot denotes differentiation with respect to us We ob=-
serve that Eqe (4=11l) is essentially the same equation as Ege
(4L=29) except that we have used Eqe (4=7L4) to define ts and
Eqe (4=75) to define ue

Although Eqe (4=11Y4) is non=-linear, and of the third ordcr, it is
simpler to work with than the linear, second order equation whick

defines G(u,t)e Ti_ie simplicity comes from the fact that n(u,t)

can be expressed in the form
(-]

nw, H=@-9+ Y p @ Ha" (4=115)
n=1
where pn(u,t) is a sum of homogeneous polynomials in u and t for
which the degree of the polynomials differ by three. Thus

_ 2 2 '

PPt = au+but+ct (4=116a)
= 3 2 2

P t) = ayu +byuitec utled, ra, (L=116Db)
- 4 3 2.2 3

Py, t) = agu +bgu t+teguti+dyut +e3t4+a3u+pst (4L=116¢)

If we put Eqe (4=116) in Eqe (4-115), and then use Eqe (4=11l4), we
can determine the constants 8 sPpseee,0 s Byeceyetice The first
several terms in the quantities in Eq. (4-11l) are

4 2- t)+81|5 u2+(3b -4 )ut+ (c -2b)t2+--- (4=117a)
n(quf =@-0+B[5a 174 172

32 42,12
_3|d d e 2 (4L=117b)
zﬂ [;u"zl] =4 £ Y

, .-1 3 (L|-'117C)
1|d d 2

2la [au_%]'“z’ T

In Eqe (4-118) we give the resulting expression for m(u,t) for
terms as high as those in g™.

=26
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In many applications it is more convenient to let t be defined by
Eqe (4=80)s 1If we recall the definition of H(u,t) in Eq. (4-81)
we can write

-1
Hw, 1) = G t@)] = ()2 w , e (4-119)

where y 1is defined by
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Let us turn now to the construction of the derivative of F(y,A\)
or G(u,t)s We begin by observing that

QE% A _ 273 ¢ 1/3 _%(3_._1 =-5—8%'—l -—8\,@‘11 (4=121)

From Eqe (4=113), we can write

-2 2
8G
Bu - /3'3— l“’ 2 (M +3 [ duz “’1.2‘"”] (4=122a)

or
G __Jm __
B g exp (£ 14 ),/il E Ll h1,2(’7)\ (4-122b)

Let us now represent the expression in curly braces in Eq. (4~-122b)
in the form
1 ]
B -3 hm=1+a,p
] = .
+a, B +a,p +-~-]h'(n+'ylp+yzﬁz+73ﬂ +ee) (4=123)

Let us first consider a more general result. Let us solve for the

A, eand B which are defined in Eq. (4=-12))

%A, + A3A3
+ A2B2 + A3}33+. «e] (L4=12Y)

In order to obtain this result, we ..bserve that

h'(n) = dh(y) = [ 1 + 84 + & +eee]h’[n + ABy

2@ @ =-10 @

@) =-nto'm-nm

2 @m) = % ben) - 20" @)
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f® ) = < b @) (h-125)
dn
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and use the Taylor series expansion

2 3 4
h'(n + AB, + A°B, + A°By + A"B, + - - ¢)

. 2 3 4
—h'(n)—[AB1+A Bz+A Ba+A B4+- . -I‘nh(ﬂ)

1{.2, 2 3 2, 4
- EIA B1 + 2A Ble + (2131133 + B2 YA 4+ ] [nh'(n) + h(n)]
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+§12[A4Bl4+- . ] [4n hen) +n° h'(n)]+' . (L=126)

in Eqe. (4=-124). By equating the coefficients of A on each side of

Eqe (4=12l;) we find that

Ay =0 B, - %
Ag = -21? Bz"ﬁ
A3='$ Bf%nl_s -3
In order to use Eqe (4-123), we define
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(eq. concluded on following page)
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(11

(4=128)

From the definition of m(u,t) in Eqs (4~118), we can obtain a re-
presentation for the reciprocals of 13 which occur in Eqe (4=127).

We first define

and then find that
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(4=129)
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We can now use Eqe (4=129) and Eqe (4=130) to compute the argumant
2

‘ C(u,t) =n+ABl+AB2+A3B +ooo

3
N+ yiB + vph% 4 yypd 4ee (h-131)

in Eqe (4-123)s The execution of these tedious algebraic manipu-
lations has been carried out only for the special case u = 0. "

£, 9 = -t+ﬁ[%h2t2—§h2]
+BZ[(E 3 3 1328 ,3 . 406 , 1 1 )h22]

35t "5 3t CTE7Et 1050 *50.3

3[ 128 4 448 33088 4 . 47564
+B [(315t "I Mt C st tmens

t+ %t—; ) h2h3
-t - Tt sz ) (4-132)
t t
Since the use of Eq. (4~123) involves a considerable amount of al-
gebraic manipulation of such complex expressions as Eqe (L4=130),
it may be desirable in future work to seck a representation for the

derivative of G(u,t) which is of the form

LY - A, by 0 (4=133)
where ¢ is defined by an expression similar to Eq. (4=114) and the
amplitude function A(u,t) involves the derivative of 7 with respect
to u. Let us indicate how this can be done by considering the de-
rivative of F(y,A) with respect to y. Let us define K(y,A) by

means of
LN - Aty -2 Ko, N (4=1314) :
Since 2 2
d Kp d 2 J dF(y, \) _
——+———£1- + |-A+ Kkt —{§—1-~0
dy° A-Kiy) B [ (yl ‘
we can show that
2 2 2 2.
K, [-sz@,]-g[ﬂ'g)_ o I PR ()
dy A - kTi(y) A - k7{(y)]
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For an "approximately identical" differential equation, we take
2
d_1+[ -%_lzlpo (4=136)
dx’ x

which has the solution

y® =7 b' @

where h(x) is a solution of Airy's equation

51% +xh=20
dx

We can then define £(y,A) by means of
K(y,2) = [ais(y,k)/ay]'l/2 vi&(y,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>